Comprehensive Exploration of Ensemble Machine Learning Techniques for IoT Cybersecurity Across Multi-Class and Binary Classification Tasks
DOI:
https://doi.org/10.62411/faith.3048-3719-51Keywords:
Attack Detection, CICIoT2023 Dataset, Cyber Security, Hybrid Model, IoT Security, Machine LearningAbstract
This study aimed to predict and detect cyberattacks using hybrid machine-learning models. The CICIoT2023 dataset was utilized for attack prediction and detection, and model performance was evaluated separately by performing thirty-four class (33+1), eight class (7+1), and binary (1+1) classifications according to the types of attacks in the dataset. Voting and stacking hybrid machine learning models were employed in this study, with Logistic Regression (LR), Gaussian Naive Bayes (GNB), and Random Forest (RF) algorithms selected as sub-models. Data preprocessing steps were applied to enhance model performance, and hyperparameter optimization was performed. As a result, this study achieved an accuracy of 98% in thirty-four class classifications, 88% in eight class classifications, and 99% in binary classifications with the Voting hybrid machine learning model. In contrast, the Stacking hybrid machine learning model reached an accuracy of 98% in both thirty-four class and eight class classifications and 99% in binary classifications. This study presents a significant innovation in the cybersecurity field by introducing an innovative approach to eliminating the disadvantages of single-model methods.
Downloads
References
L. S. Vailshery, “Number of IoT connected devices worldwide from 2022 to 2023, with forecast from 2024 to 2033” Statista. https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/
A. R. Khan, M. Kashif, R. H. Jhaveri, R. Raut, T. Saba, and S. A. Bahaj, “Deep Learning for Intrusion Detection and Security of Internet of Things (IoT): Current Analysis, Challenges, and Possible Solutions,” Secur. Commun. Networks, vol. 2022, pp. 1–13, Jul. 2022, doi: 10.1155/2022/4016073.
F. Özger, “Makine öğrenmesi algoritmalarının hibrit yaklaşımı ile ağ anomalisi tespiti,” Sakarya University of Applied Sciences Institutional Repository. 2023. [Online]. Available: https://acikerisim.subu.edu.tr/xmlui/handle/20.500.14002/2440
J. P. Ntayagabiri, Y. Bentaleb, J. Ndikumagenge, and H. EL Makhtoum, “A Comprehensive Approach to Protocols and Security in Internet of Things Technology,” J. Comput. Theor. Appl., vol. 2, no. 3, pp. 324–341, Dec. 2024, doi: 10.62411/jcta.11660.
E. C. P. Neto, S. Dadkhah, R. Ferreira, A. Zohourian, R. Lu, and A. A. Ghorbani, “CICIoT2023: A Real-Time Dataset and Benchmark for Large-Scale Attacks in IoT Environment,” Sensors, vol. 23, no. 13, p. 5941, Jun. 2023, doi: 10.3390/s23135941.
N. Sharmin and C. Kiekintveld, “Enhancing IoT Device Security: Predicting and Analyzing Reconnaissance Attacks Using Flags and Time-Based Attributes,” in 2023 10th International Conference on Internet of Things: Systems, Management and Security (IOTSMS), Oct. 2023, pp. 23–30. doi: 10.1109/IOTSMS59855.2023.10325811.
O. Sahin and S. Uludag, “Advancing Intrusion Detection Efficiency: A ’Less is More’ Approach via Feature Selection.” Oct. 09, 2023. doi: 10.21203/rs.3.rs-3398752/v1.
A. Almaleh, R. Almushabb, and R. Ogran, “Malware API Calls Detection Using Hybrid Logistic Regression and RNN Model,” Appl. Sci., vol. 13, no. 9, p. 5439, Apr. 2023, doi: 10.3390/app13095439.
Z. Wang, H. Chen, S. Yang, X. Luo, D. Li, and J. Wang, “A lightweight intrusion detection method for IoT based on deep learning and dynamic quantization,” PeerJ Comput. Sci., vol. 9, p. e1569, Sep. 2023, doi: 10.7717/peerj-cs.1569.
S. Haque, F. El-Moussa, N. Komninos, and R. Muttukrishnan, “A Systematic Review of Data-Driven Attack Detection Trends in IoT,” Sensors, vol. 23, no. 16, p. 7191, Aug. 2023, doi: 10.3390/s23167191.
R. Atay, D. E. Odabaş, and M. Kurt Pehlivanoğlu, “İki Seviyeli Hibrit Makine Öğrenmesi Yöntemi ile Saldırı Tespiti,” Gazi J. Eng. Sci., vol. 5, no. 3, pp. 258–272, Dec. 2019, doi: 10.30855/gmbd.2019.03.07.
M. H. Calp and R. Bütüner, “Detecting the Cyber Attacks on IoT-Based Network Devices Using Machine Learning Algorithms,” Politek. Derg., vol. 27, no. 5, pp. 1971–1989, Oct. 2024, doi: 10.2339/politeknik.1340515.
S. Keskin and E. Okatan, “Machine Learning Methods for Intrusion Detection in Computer Networks: A Comparative Analysis,” Int. J. Eng. Innov. Res., vol. 5, no. 3, pp. 268–279, Oct. 2023, doi: 10.47933/ijeir.1360141.
D. R. I. M. Setiadi, S. Widiono, A. N. Safriandono, and S. Budi, “Phishing Website Detection Using Bidirectional Gated Recurrent Unit Model and Feature Selection,” J. Futur. Artif. Intell. Technol., vol. 2, no. 1, pp. 75–83, 2024, doi: 10.62411/faith.2024-15.
Z. S. Dhahir, “A Hybrid Approach for Efficient DDoS Detection in Network Traffic Using CBLOF-Based Feature Engineering and XGBoost,” J. Futur. Artif. Intell. Technol., vol. 1, no. 2, pp. 174–190, Sep. 2024, doi: 10.62411/faith.2024-33.
M. D. Okpor et al., “Pilot Study on Enhanced Detection of Cues over Malicious Sites Using Data Balancing on the Random Forest Ensemble,” J. Futur. Artif. Intell. Technol., vol. 1, no. 2, pp. 109–123, Sep. 2024, doi: 10.62411/faith.2024-14.
C. S. Htwe, Z. T. T. Myint, and Y. M. Thant, “IoT Security Using Machine Learning Methods with Features Correlation,” J. Comput. Theor. Appl., vol. 2, no. 2, pp. 151–163, Aug. 2024, doi: 10.62411/jcta.11179.
M. D. Nguyen, M. T. Nguyen, T. C. Vu, T. M. Ta, Q. A. Tran, and D. T. Nguyen, “A Comprehensive Study on Applications of Blockchain in Wireless Sensor Networks for Security Purposes,” J. Comput. Theor. Appl., vol. 2, no. 1, pp. 102–117, Jul. 2024, doi: 10.62411/jcta.10486.
M. I. Akazue, I. A. Debekeme, A. E. Edje, C. Asuai, and U. J. Osame, “UNMASKING FRAUDSTERS: Ensemble Features Selec-tion to Enhance Random Forest Fraud Detection,” J. Comput. Theor. Appl., vol. 1, no. 2, pp. 201–211, Dec. 2023, doi: 10.33633/jcta.v1i2.9462.
T. Johnson, A. J. Liu, S. Raza, and A. McGuire, “A Comparison of Modeling Preprocessing Techniques,” arXiv. Feb. 23, 2023. [Online]. Available: http://arxiv.org/abs/2302.12042
S. Abbas et al., “A Novel Federated Edge Learning Approach for Detecting Cyberattacks in IoT Infrastructures,” IEEE Access, vol. 11, pp. 112189–112198, 2023, doi: 10.1109/ACCESS.2023.3318866.
K. R. Narayan, S. Mookherji, V. Odelu, R. Prasath, A. C. Turlapaty, and A. K. Das, “IIDS: Design of Intelligent Intrusion Detection System for Internet-of-Things Applications,” arXiv. Aug. 02, 2023. [Online]. Available: http://arxiv.org/abs/2308.00943
C. Karakuş, “Makine Öğrenmesi Algoritmaları,” Dr. Cahit Karakuş, 2023. https://ckk.com.tr/Kitap/Mühendislik/ML 01 Makine Öğrenmesi Algoritmaları.html
Y. Zhou, G. Cheng, S. Jiang, and M. Dai, “Building an efficient intrusion detection system based on feature selection and ensemble classifier,” Comput. Networks, vol. 174, p. 107247, Jun. 2020, doi: 10.1016/j.comnet.2020.107247.
D. H. Wolpert, “Stacked generalization,” Neural Networks, vol. 5, no. 2, pp. 241–259, Jan. 1992, doi: 10.1016/S0893-6080(05)80023-1.
L. Rokach, “Ensemble-based classifiers,” Artif. Intell. Rev., vol. 33, no. 1–2, pp. 1–39, Feb. 2010, doi: 10.1007/s10462-009-9124-7.
E. U. H. Qazi, A. Almorjan, and T. Zia, “A One-Dimensional Convolutional Neural Network (1D-CNN) Based Deep Learning System for Network Intrusion Detection,” Appl. Sci., vol. 12, no. 16, p. 7986, Aug. 2022, doi: 10.3390/app12167986.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 1970 Aziz Çetin

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.