AI-Based Detection Techniques for Skin Diseases: A Review of Recent Methods, Datasets, Metrics, and Challenges

Authors

  • Oluwayemisi Jaiyeoba Federal University Lokoja
  • Oluwaseyi Jaiyeoba Purdue University
  • Emeka Ogbuju Federal University Lokoja
  • Francisca Oladipo Thomas Adewumi University

DOI:

https://doi.org/10.62411/faith.3048-3719-46

Keywords:

Artificial Intelligence, Convolutional Neural Network, Deep Learning, Detection, machine learning

Abstract

The identification and early treatment of skin diseases are crucial to mitigate serious health risks. The growing attention on researching skin disease analysis stems from the transformative impact of artificial intelligence (AI) in dermatology. In this systematic review, we adhered to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines to comprehensively assess recent approaches for skin disease detection. Our study addressed four key research questions exploring the methods for skin disease detection, the evaluation techniques employed to measure the effectiveness of skin disease detection models, the datasets utilized, and the challenges encountered in applying machine learning and deep learning techniques for skin disease detection. We screened studies from 2019 to 2023 from reputable databases, including IEEE Explore, Science Direct, and Google Scholar. Our findings revealed that the CNN model outperformed other deep learning models. Additionally, our analysis identified the ISIC public dataset as the most frequently used dataset. The studies reviewed employed evaluation metrics such as accuracy, recall, precision, sensitivity, and F1 score to evaluate model performance. We identified several limitations in the studies we reviewed, including the use of limited datasets, challenges in distinguishing between diseases with similar features, and other related limitations. Overall, we provided a comprehensive overview of the current state-of-the-art techniques in skin disease detection and highlighted the future directions.

Downloads

Download data is not yet available.

Author Biographies

Oluwayemisi Jaiyeoba, Federal University Lokoja

Department of Computer Science, Federal University Lokoja, Lokoja, Kogi State, Nigeria

Oluwaseyi Jaiyeoba, Purdue University

Department of Computer Graphics Technology, Purdue University, West Lafayette, Indiana, United States

Emeka Ogbuju, Federal University Lokoja

Department of Computer Science, Federal University Lokoja, Lokoja, Kogi State, Nigeria

Department of Computer Science, Miva Open University, Federal Capital Territory, Abuja, Nigeria

Francisca Oladipo, Thomas Adewumi University

Department of Computer Science, Thomas Adewumi University, Oko, Kwara State, Nigeria

References

O. Jaiyeoba, E. Ogbuju, O. T. Yomi, and F. Oladipo, “Development of a Model to Classify Skin Diseases using Stacking Ensemble Machine Learning Techniques,” J. Comput. Theor. Appl., vol. 2, no. 1, pp. 22–38, May 2024, doi: 10.62411/jcta.10488.

F. Solano, “Photoprotection and Skin Pigmentation: Melanin-Related Molecules and Some Other New Agents Obtained from Natural Sources,” Molecules, vol. 25, no. 7, p. 1537, Mar. 2020, doi: 10.3390/molecules25071537.

P. P. Tumpa and M. A. Kabir, “An artificial neural network based detection and classification of melanoma skin cancer using hybrid texture features,” Sensors Int., vol. 2, p. 100128, 2021, doi: 10.1016/j.sintl.2021.100128.

N. Hameed, A. M. Shabut, M. K. Ghosh, and M. A. Hossain, “Multi-class multi-level classification algorithm for skin lesions classification using machine learning techniques,” Expert Syst. Appl., vol. 141, p. 112961, 2020, doi: 10.1016/j.eswa.2019.112961.

S. Rasool, A. H. Khan, Q. Rasool, S. Abbas, and ..., “A Systematic Analysis for the Detection of Skin Disease Using Deep Learning Methodologies,” J. Comput. …, vol. 04, no. 02, 2023.

K. W. Ng and W. M. Lau, “Skin deep: The basics of human skin structure and drug penetration,” Percutaneous Penetration Enhanc. Chem. Methods Penetration Enhanc. Drug Manip. Strateg. Veh. Eff., pp. 3–11, Jan. 2015, doi: 10.1007/978-3-662-45013-0_1.

V. Pugazhenthi et al., “Skin Disease Detection And Classification,” Int. J. Adv. Eng. Res. Sci., vol. 6, no. 5, pp. 396–400, 2019, doi: 10.22161/ijaers.6.5.53ï.

G. Bocheva, R. M. Slominski, and A. T. Slominski, “Environmental Air Pollutants Affecting Skin Functions with Systemic Implications,” Int. J. Mol. Sci., vol. 24, no. 13, p. 10502, Jun. 2023, doi: 10.3390/ijms241310502.

L. Blicharz, J. Czuwara, L. Rudnicka, and A. Torrelo, “Autoinflammatory Keratinization Diseases—The Concept, Pathophysiology, and Clinical Implications,” Clin. Rev. Allergy Immunol., vol. 65, no. 3, pp. 377–402, Dec. 2023, doi: 10.1007/s12016-023-08971-3.

A. K. Sah, S. Bhusal, S. Amatya, M. Mainali, and S. Shakya, “Dermatological Diseases Classification using Image Processing and Deep Neural Network,” Proc. - 2019 Int. Conf. Comput. Commun. Intell. Syst. ICCCIS 2019, vol. 2019-Janua, pp. 381–386, Oct. 2019, doi: 10.1109/ICCCIS48478.2019.8974487.

M. Al Mamun and M. S. Uddin, “A Survey on a Skin Disease Detection System,” Int. J. Healthc. Inf. Syst. Informatics, vol. 16, no. 4, pp. 1–17, Oct. 2021, doi: 10.4018/IJHISI.20211001.oa35.

F. A. Mphande, “The Structure and Function of the Skin,” in Skin Disorders in Vulnerable Populations, Singapore: Springer Singapore, 2020, pp. 13–22. doi: 10.1007/978-981-15-3879-7_2.

N. V. Kumar, P. V. Kumar, K. Pramodh, and Y. Karuna, “Classification of Skin diseases using Image processing and SVM,” in Proceedings - International Conference on Vision Towards Emerging Trends in Communication and Networking, ViTECoN 2019, Mar. 2019. doi: 10.1109/ViTECoN.2019.8899449.

P. R. Kshirsagar, H. Manoharan, S. Shitharth, A. M. Alshareef, N. Albishry, and P. K. Balachandran, “Deep Learning Approaches for Prognosis of Automated Skin Disease,” Life, vol. 12, no. 3, p. 426, Mar. 2022, doi: 10.3390/life12030426.

T. Goswami, V. K. Dabhi, and H. B. Prajapati, “Skin Disease Classification from Image - A Survey,” pp. 599–605, 2020, doi: 10.1109/ICACCS48705.2020.9074232.

D. Bordoloi et al., “Classification and Detection of Skin Disease Based on Machine Learning and Image Processing Evolutionary Models,” Comput. Assist. Methods Eng. Sci., vol. 30, no. 2, pp. 247–256, Apr. 2023, doi: 10.24423/CAMES.479.

H. Bhatt, V. Shah, K. Shah, R. Shah, and M. Shah, “State-of-the-art machine learning techniques for melanoma skin cancer detection and classification: a comprehensive review,” Intell. Med., vol. 3, no. 3, pp. 180–190, 2023, doi: 10.1016/j.imed.2022.08.004.

M. Dildar et al., “Skin Cancer Detection: A Review Using Deep Learning Techniques,” Int. J. Environ. Res. Public Health, vol. 18, no. 10, p. 5479, May 2021, doi: 10.3390/ijerph18105479.

T. Kameswara Rao, P. Chamanthi, N. T. Kumar, R. L. Amulya, M. Uday Sagar, and U. G. Students, “Skin Disease Detection Using Machine Learning,” Int. J. Food Nutr. Sci., vol. 11, no. 12, Apr. 2023, doi: 10.48047/ijfans/v11/i12/171.

S. Bhadula*, S. Sharma, P. Juyal, and C. Kulshrestha, “Machine Learning Algorithms based Skin Disease Detection,” Int. J. Innov. Technol. Explor. Eng., vol. 9, no. 2, pp. 4044–4049, Dec. 2019, doi: 10.35940/ijitee.B7686.129219.

H. Q. Yu and S. Reiff-Marganiec, “Targeted Ensemble Machine Classification Approach for Supporting IoT Enabled Skin Disease Detection,” IEEE Access, vol. 9, pp. 50244–50252, 2021, doi: 10.1109/ACCESS.2021.3069024.

M. A. Hashmani, S. M. Jameel, S. S. H. Rizvi, and S. Shukla, “An Adaptive Federated Machine Learning-Based Intelligent System for Skin Disease Detection: A Step toward an Intelligent Dermoscopy Device,” Appl. Sci., vol. 11, no. 5, p. 2145, Feb. 2021, doi: 10.3390/app11052145.

M. J. Hajgude, A. Bhavsar, H. Achara, and N. Khubchandani, “Skin Disease Detection Using Image Processing with Data Mining and Deep Learning,” Int. Res. J. Eng. Technol., vol. 6, no. 4, pp. 4363–4366, 2019.

M. M. I. Rahi, F. T. Khan, M. T. Mahtab, A. K. M. Amanat Ullah, M. G. R. Alam, and M. A. Alam, “Detection Of Skin Cancer Using Deep Neural Networks,” in 2019 IEEE Asia-Pacific Conference on Computer Science and Data Engineering (CSDE), Dec. 2019, pp. 1–7. doi: 10.1109/CSDE48274.2019.9162400.

S. Albahli, N. Nida, A. Irtaza, M. H. Yousaf, and M. T. Mahmood, “Melanoma Lesion Detection and Segmentation Using YOLOv4-DarkNet and Active Contour,” IEEE Access, vol. 8, pp. 198403–198414, 2020, doi: 10.1109/ACCESS.2020.3035345.

P. Banasode, M. Patil, and N. Ammanagi, “A Melanoma Skin Cancer Detection Using Machine Learning Technique: Support Vector Machine,” IOP Conf. Ser. Mater. Sci. Eng., vol. 1065, no. 1, pp. 1–5, 2021, doi: 10.1088/1757-899X/1065/1/012039.

I. Abd El-Fattah, A. M. Ali, W. El-Shafai, T. E. Taha, and F. E. Abd El-Samie, “Deep-learning-based super-resolution and classification framework for skin disease detection applications,” Opt. Quantum Electron., vol. 55, no. 5, p. 427, May 2023, doi: 10.1007/s11082-022-04432-x.

K. S. Rao, P. S. Yelkar, O. N. Pise, and S. Borde, “Skin Disease Detection Using Machine Learning Techniques,” J. Xidian Univ., vol. 15, no. 4, pp. 64–68, Apr. 2021, doi: 10.37896/jxu15.4/022.

A. A. Adegun and S. Viriri, “FCN-Based DenseNet Framework for Automated Detection and Classification of Skin Lesions in Dermoscopy Images,” IEEE Access, vol. 8, pp. 150377–150396, 2020, doi: 10.1109/ACCESS.2020.3016651.

M. Neema, A. S. Nair, A. Joy, and A. Pradeep Menon, “Skin Lesion/Cancer Detection Using Deep Learning,” Int. J. Appl. Eng. Res., vol. 15, no. 1, pp. 11–17, 2020.

S. Ahmed et al., “Human Skin Diseases Detection and Classification using CNN,” in 2023 International Conference on Electrical, Computer and Communication Engineering (ECCE), Feb. 2023, pp. 1–6. doi: 10.1109/ECCE57851.2023.10101636.

I. Abunadi and E. M. Senan, “Deep Learning and Machine Learning Techniques of Diagnosis Dermoscopy Images for Early Detection of Skin Diseases,” Electronics, vol. 10, no. 24, p. 3158, Dec. 2021, doi: 10.3390/electronics10243158.

S. Ozturk and T. Cukur, “Deep Clustering via Center-Oriented Margin Free-Triplet Loss for Skin Lesion Detection in Highly Imbalanced Datasets,” IEEE J. Biomed. Heal. Informatics, vol. 26, no. 9, pp. 4679–4690, Sep. 2022, doi: 10.1109/JBHI.2022.3187215.

T. A. Rimi, N. Sultana, and M. F. Ahmed Foysal, “Derm-NN: Skin Diseases Detection Using Convolutional Neural Network,” Proc. Int. Conf. Intell. Comput. Control Syst. ICICCS 2020, no. Iciccs, pp. 1205–1209, 2020, doi: 10.1109/ICICCS48265.2020.9120925.

V. Venugopal, N. I. Raj, M. K. Nath, and N. Stephen, “A deep neural network using modified EfficientNet for skin cancer detection in dermoscopic images,” Decis. Anal. J., vol. 8, no. December 2022, p. 100278, Sep. 2023, doi: 10.1016/j.dajour.2023.100278.

N. S. A. ALEnezi, “A Method of Skin Disease Detection Using Image Processing and Machine Learning,” Procedia Comput. Sci., vol. 163, pp. 85–92, 2019, doi: 10.1016/j.procs.2019.12.090.

M. Ahammed, M. Al Mamun, and M. S. Uddin, “A machine learning approach for skin disease detection and classification using image segmentation,” Healthc. Anal., vol. 2, no. October, p. 100122, 2022, doi: 10.1016/j.health.2022.100122.

V. Srividhya, K. Sujatha, R. S. Ponmagal, G. Durgadevi, L. Madheshwaran, and V., “Vision based Detection and Categorization of Skin lesions using Deep Learning Neural networks,” Procedia Comput. Sci., vol. 171, no. 2019, pp. 1726–1735, 2020, doi: 10.1016/j.procs.2020.04.185.

V. R. Balaji, S. T. Suganthi, R. Rajadevi, V. Krishna Kumar, B. Saravana Balaji, and S. Pandiyan, “Skin disease detection and segmentation using dynamic graph cut algorithm and classification through Naive Bayes classifier,” Measurement, vol. 163, p. 107922, Oct. 2020, doi: 10.1016/j.measurement.2020.107922.

T. K. Yoo, J. Y. Choi, H. K. Kim, I. H. Ryu, and J. K. Kim, “Adopting low-shot deep learning for the detection of conjunctival melanoma using ocular surface images,” Comput. Methods Programs Biomed., vol. 205, p. 106086, 2021, doi: 10.1016/j.cmpb.2021.106086.

M. K. Monika, N. A. Vignesh, C. U. Kumari, M. N. V. S. S. Kumar, and E. Lydia, L, “Skin cancer detection and classification using machine learning,” Mater. Today Proc., vol. 33, pp. 4266–4270, 2020, doi: 10.1016/j.matpr.2020.07.366.

J. Daghrir, L. Tlig, M. Bouchouicha, and M. Sayadi, “Melanoma skin cancer detection using deep learning and classical machine learning techniques: A hybrid approach,” 2020 Int. Conf. Adv. Technol. Signal Image Process. ATSIP 2020, Sep. 2020, doi: 10.1109/ATSIP49331.2020.9231544.

U. Aishwarya, I. J. Daniel, and R. Raghul, “Convolutional Neural Network based Skin Lesion Classification and Identification,” 2020 Int. Conf. Inven. Comput. Technol., pp. 264–270, Feb. 2020, doi: 10.1109/ICICT48043.2020.9112485.

T. T. Nguyen et al., “Artificial Intelligence in the Battle against Coronavirus (COVID-19): A Survey and Future Research Directions,” 2020.

R. S. Sanketh, M. Madhu Bala, P. V. Narendra Reddy, and G. V. S. Phani Kumar, “Melanoma Disease Detection Using Convolutional Neural Networks,” in 2020 4th International Conference on Intelligent Computing and Control Systems (ICICCS), May 2020, pp. 1031–1037. doi: 10.1109/ICICCS48265.2020.9121075.

R. Kaur, H. Gholamhosseini, and R. Sinha, “Melanoma Classification Using a Novel Deep Convolutional Neural Network with Dermoscopic Images,” pp. 1–15, 2022.

Y. Salve, V. Khile, N. Dinkwar, A. Patil, P. Dhore, and S. Angadi, “A Study on Skin Disease Detection and Hospital Recommendation System,” J. Pharm. Negat. Results, vol. 13, pp. 7539–7548, Dec. 2022, doi: 10.47750/pnr.2022.13.S07.909.

A. Kalaivani and S. Karpagavalli, “Detection and classification of skin diseases with ensembles of deep learning networks in medical imaging,” Int. J. Health Sci. (Qassim)., vol. 6, no. April, pp. 13624–13637, Jun. 2022, doi: 10.53730/ijhs.v6nS1.8402.

A. Swaroop and A. K. Srivastava, “Artificial intelligence based approach for melanoma skin cancer detection,” Dogo Rangsang Res. J., vol. 9, no. 01, 2022.

M. A. Araaf, K. Nugroho, and D. R. I. M. Setiadi, “Comprehensive Analysis and Classification of Skin Diseases based on Image Texture Features using K-Nearest Neighbors Algorithm,” J. Comput. Theor. Appl., vol. 1, no. 1, pp. 31–40, Sep. 2023, doi: 10.33633/jcta.v1i1.9185.

I. Razzak, G. Shoukat, S. Naz, and T. M. Khan, “Skin Lesion Analysis Toward Accurate Detection of Melanoma using Multistage Fully Connected Residual Network,” Proc. Int. Jt. Conf. Neural Networks, 2020, doi: 10.1109/IJCNN48605.2020.9206881.

A. M. A. Thaajwer and P. U. A. Ishanka, “Melanoma skin cancer detection using image processing and machine learning techniques,” ICAC 2020 - 2nd Int. Conf. Adv. Comput. Proc., pp. 363–368, Dec. 2020, doi: 10.1109/ICAC51239.2020.9357309.

S. A. Alshawi and G. F. K. A. Musawi, “Skin Cancer Image Detection and Classification by CNN based Ensemble Learning,” Int. J. Adv. Comput. Sci. Appl., vol. 14, no. 5, p. 2023, 2023, doi: 10.14569/IJACSA.2023.0140575.

T. Kameswara Rao, P. Chamanthi, N. T. Kumar, R. L. Amulya, M. Uday Sagar, and U. G. Students, “Skin Disease Detection Using Machine Learning,” IJFANS Int. J. Food Nutr. Sci., vol. 11, no. 1593–1604, 2022, doi: 10.48047/IJFANS/V11/I12/171.

N. Codella et al., “Skin Lesion Analysis Toward Melanoma Detection 2018: A Challenge Hosted by the International Skin Imaging Collaboration (ISIC),” 2018.

P. Tschandl, C. Rosendahl, and H. Kittler, “Data Descriptor: The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions Background & Summary,” Nat. Publ. Gr., 2018, doi: 10.1038/sdata.2018.161.

D. Gutman et al., “Skin Lesion Analysis toward Melanoma Detection: A Challenge at the International Symposium on Biomedical Imaging (ISBI) 2016, hosted by the International Skin Imaging Collaboration (ISIC),” 2016.

N. C. F. Codella et al., “Skin lesion analysis toward melanoma detection: A challenge at the 2017 International symposium on biomedical imaging (ISBI), hosted by the international skin imaging collaboration (ISIC),” in 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), Apr. 2018, pp. 168–172. doi: 10.1109/ISBI.2018.8363547.

M. Combalia et al., “BCN20000: Dermoscopic Lesions in the Wild,” Aug. 2019.

V. Rotemberg et al., “a patient-centric dataset of images and metadata for identifying melanomas using clinical context,” 2021, doi: 10.1038/s41597-021-00815-z.

T. Mendonca, P. M. Ferreira, J. S. Marques, A. R. S. Marcal, and J. Rozeira, “PH2 - A dermoscopic image database for research and benchmarking,” Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS, pp. 5437–5440, 2013, doi: 10.1109/EMBC.2013.6610779.

A. Ahmed, H. Ahmad, M. Khurshid, and K. Abid, “Classification of Skin Disease using Machine Learning,” VFAST Trans. Softw. Eng., vol. 11, no. 1, pp. 109–122, 2023.

Downloads

Published

2024-12-28

How to Cite

[1]
O. Jaiyeoba, O. Jaiyeoba, E. Ogbuju, and F. Oladipo, “AI-Based Detection Techniques for Skin Diseases: A Review of Recent Methods, Datasets, Metrics, and Challenges”, J. Fut. Artif. Intell. Tech., vol. 1, no. 3, pp. 318–336, Dec. 2024.

Similar Articles

1 2 3 4 > >> 

You may also start an advanced similarity search for this article.