AI-Powered Steganography: Advances in Image, Linguistic, and 3D Mesh Data Hiding – A Survey
DOI:
https://doi.org/10.62411/faith.3048-3719-76Keywords:
3D mesh steganography, AI-based steganography, Application of steganography, Critical review of steganography, Generative steganography, NLP steganography, Steganography quality assessmentAbstract
The rapid evolution of artificial intelligence (AI) has significantly transformed the field of steganography, extending its scope beyond conventional image-based techniques to novel domains such as linguistic and 3D mesh data hiding. This review presents a concise, accessible, and critical examination of recent AI-powered steganography methods, focusing on three distinct modalities: image, linguistic, and 3D mesh. Unlike most surveys focusing solely on one modality, this work highlights some modalities, identifies their unique challenges, and discusses how AI has reshaped embedding mechanisms, evaluation strategies, and security concerns. In image-based steganography, deep models such as GANs and Transformers have improved imperceptibility and extraction accuracy, but face limitations in computational efficiency and extraction consistency. Linguistic steganography, previously hindered by semantic fragility, has been revitalized by large language models (LLMs), enabling context-aware and reversible embedding, though still constrained by metric standardization and synchronization issues. Meanwhile, 3D mesh steganography remains dominated by non-AI methods, offering fertile ground for innovation through geometric deep learning. This review also provides a comparative summary of design principles, performance metrics, and modality-specific trade-offs. The analysis reveals a shift in evaluation paradigms, from numeric fidelity (e.g., PSNR, SSIM) to semantic and perceptual metrics (e.g., LPIPS, BERTScore, Hausdorff Distance). Looking ahead, future directions include cross-modal integration, domain adaptation, lightweight AI models, and the development of unified benchmarks. By presenting recent advances and critical perspectives across underexplored domains, this survey aims to inspire early-stage researchers and practitioners to explore new frontiers of steganography in the AI era.
Downloads
References
D. R. I. M. Setiadi, S. Rustad, P. N. Andono, and G. F. Shidik, “Digital image steganography survey and investigation (goal, assessment, method, development, and dataset),” Signal Processing, vol. 206, p. 108908, May 2023, doi: 10.1016/j.sigpro.2022.108908.
N. Rijati, A. K. Sahu, D. R. I. M. Setiadi, and A. Sambas, “DWT-DCT Image Watermarking with Quantum-inspired Optimization,” Int. J. Intell. Eng. Syst., vol. 18, no. 1, pp. 1034–1044, Feb. 2025, doi: 10.22266/ijies2025.0229.74.
K. Hu, M. Wang, X. Ma, J. Chen, X. Wang, and X. Wang, “Learning-based image steganography and watermarking: A survey,” Expert Syst. Appl., vol. 249, no. PC, p. 123715, Sep. 2024, doi: 10.1016/j.eswa.2024.123715.
S. Rahman et al., “A Comprehensive Study of Digital Image Steganographic Techniques,” IEEE Access, vol. 11, no. January, pp. 6770–6791, 2023, doi: 10.1109/ACCESS.2023.3237393.
D. R. I. M. Setiadi, “Improved payload capacity in LSB image steganography uses dilated hybrid edge detection,” J. King Saud Univ. - Comput. Inf. Sci., vol. 34, no. 2, pp. 104–114, Feb. 2022, doi: 10.1016/j.jksuci.2019.12.007.
B. Patwari, U. Nandi, and S. K. Ghosal, “Image steganography based on difference of Gaussians edge detection,” Multimed. Tools Appl., vol. 82, no. 28, pp. 43759–43779, Nov. 2023, doi: 10.1007/s11042-023-15360-7.
A. K. Sahu, G. Swain, M. Sahu, and J. Hemalatha, “Multi-directional block based PVD and modulus function image steganography to avoid FOBP and IEP,” J. Inf. Secur. Appl., vol. 58, p. 102808, May 2021, doi: 10.1016/j.jisa.2021.102808.
T. Pevný, T. Filler, and P. Bas, “Using high-dimensional image models to perform highly undetectable steganography,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 6387 LNCS, pp. 161–177, 2010, doi: 10.1007/978-3-642-16435-4_13.
B. Li, M. Wang, J. Huang, and X. Li, “A new cost function for spatial image steganography,” in 2014 IEEE International Conference on Image Processing (ICIP), Oct. 2014, pp. 4206–4210. doi: 10.1109/ICIP.2014.7025854.
V. Holub and J. Fridrich, “Designing steganographic distortion using directional filters,” in 2012 IEEE International Workshop on Information Forensics and Security (WIFS), Dec. 2012, pp. 234–239. doi: 10.1109/WIFS.2012.6412655.
V. Sedighi, R. Cogranne, and J. Fridrich, “Content-Adaptive Steganography by Minimizing Statistical Detectability,” IEEE Trans. Inf. Forensics Secur., vol. 11, no. 2, pp. 221–234, Feb. 2016, doi: 10.1109/TIFS.2015.2486744.
D. R. I. M. Setiadi, S. Rustad, P. N. Andono, and G. F. Shidik, “Maximizing complex features to minimize the detectability of content-adaptive steganography,” Multimed. Tools Appl., Aug. 2024, doi: 10.1007/s11042-024-20056-7.
S. Kaur, S. Singh, M. Kaur, and H.-N. Lee, “A Systematic Review of Computational Image Steganography Approaches,” Arch. Comput. Methods Eng., vol. 29, no. 7, pp. 4775–4797, Nov. 2022, doi: 10.1007/s11831-022-09749-0.
T. Muralidharan, A. Cohen, A. Cohen, and N. Nissim, “The infinite race between steganography and steganalysis in images,” Signal Processing, vol. 201, p. 108711, 2022, doi: 10.1016/j.sigpro.2022.108711.
P. Bedi, A. Singhal, and V. Bhasin, “Deep learning based active image steganalysis: a review,” Int. J. Syst. Assur. Eng. Manag., vol. 15, no. 3, pp. 786–799, Mar. 2024, doi: 10.1007/s13198-023-02203-9.
B. Song, P. Wei, S. Wu, Y. Lin, and W. Zhou, “A survey on Deep-Learning-based image steganography,” Expert Syst. Appl., vol. 254, no. May, p. 124390, Nov. 2024, doi: 10.1016/j.eswa.2024.124390.
N. Subramanian, O. Elharrouss, S. Al-Maadeed, and A. Bouridane, “Image Steganography: A Review of the Recent Advances,” IEEE Access, vol. 9, pp. 23409–23423, 2021, doi: 10.1109/ACCESS.2021.3053998.
M. H. Noor Azam, F. Ridzuan, M. N. S. Mohd Sayuti, A. H. Azni, N. H. Zakaria, and V. Potdar, “A systematic review on cover selection methods for steganography: Trend analysis, novel classification and analysis of the elements,” Comput. Sci. Rev., vol. 56, no. January, p. 100726, May 2025, doi: 10.1016/j.cosrev.2025.100726.
J. Kunhoth, N. Subramanian, S. Al-Maadeed, and A. Bouridane, “Video steganography: recent advances and challenges,” Multimed. Tools Appl., vol. 82, no. 27, pp. 41943–41985, Nov. 2023, doi: 10.1007/s11042-023-14844-w.
B. Chen, Y. Hong, and Y. Nie, “Deep video steganography using temporal-attention-based frame selection and spatial sparse adversarial attack,” J. Vis. Commun. Image Represent., vol. 104, p. 104311, Oct. 2024, doi: 10.1016/j.jvcir.2024.104311.
S. R B, M. G R, and M. C. Belavagi, “A Mellin transform based video steganography with improved resistance to deep learning steganalysis for next generation networks,” MethodsX, vol. 13, p. 102887, Dec. 2024, doi: 10.1016/j.mex.2024.102887.
Y. Sanjalawe, S. Al-E’mari, S. Fraihat, M. Abualhaj, and E. Alzubi, “A deep learning-driven multi-layered steganographic approach for enhanced data security,” Sci. Rep., vol. 15, no. 1, p. 4761, Feb. 2025, doi: 10.1038/s41598-025-89189-5.
D. T. Firdaus, N. J. D. La Croix, T. Ahmad, D. Mukanyiligira, and L. Sibomana, “Steganographic model to conceal the secret data in audio files utilizing a fourfold paradigm: Interpolation, multi-layering, optimized sample space, and smoothing,” J. Saf. Sci. Resil., vol. 6, no. 2, pp. 138–149, Jun. 2025, doi: 10.1016/j.jnlssr.2024.09.004.
C. Y. Chang and S. Clark, “Linguistic steganography using automatically generated paraphrases,” NAACL HLT 2010 - Hum. Lang. Technol. 2010 Annu. Conf. North Am. Chapter Assoc. Comput. Linguist. Proc. Main Conf., no. June, pp. 591–599, 2010.
C.-Y. Chang and S. Clark, “Practical Linguistic Steganography using Contextual Synonym Substitution and a Novel Vertex Coding Method,” Comput. Linguist., vol. 40, no. 2, pp. 403–448, Jun. 2014, doi: 10.1162/COLI_a_00176.
J. Wu, Z. Wu, Y. Xue, J. Wen, and W. Peng, “Generative Text Steganography with Large Language Model,” in Proceedings of the 32nd ACM International Conference on Multimedia, Oct. 2024, pp. 10345–10353. doi: 10.1145/3664647.3680562.
M. Steinebach, “Natural Language Steganography by ChatGPT,” in Proceedings of the 19th International Conference on Availability, Reliability and Security, Jul. 2024, pp. 1–9. doi: 10.1145/3664476.3670930.
X. Xiang, Y. Tan, J. Qin, and Y. Tan, “Advancements and challenges in coverless image steganography: A survey,” Signal Processing, vol. 228, no. May 2024, p. 109761, Mar. 2025, doi: 10.1016/j.sigpro.2024.109761.
H. Zhou, W. Zhang, K. Chen, W. Li, and N. Yu, “Three-Dimensional Mesh Steganography and Steganalysis: A Review,” IEEE Trans. Vis. Comput. Graph., vol. 28, no. 12, pp. 5006–5025, Dec. 2022, doi: 10.1109/TVCG.2021.3075136.
C. Xiao, S. Peng, L. Zhang, J. Wang, D. Ding, and J. Zhang, “A transformer-based adversarial network framework for steganography,” Expert Syst. Appl., vol. 269, no. July 2024, p. 126391, Apr. 2025, doi: 10.1016/j.eswa.2025.126391.
Z. Li et al., “Adversarial feature hybrid framework for steganography with shifted window local loss,” Neural Networks, vol. 165, pp. 358–369, Aug. 2023, doi: 10.1016/j.neunet.2023.05.053.
K. Wang, Y. Zhu, Q. Chang, J. Wang, and Y. Yao, “High-accuracy image steganography with invertible neural network and generative adversarial network,” Signal Processing, vol. 234, no. January, p. 109988, Sep. 2025, doi: 10.1016/j.sigpro.2025.109988.
X. Duan, C. Li, B. Wei, G. Wu, C. Qin, and H. Nam, “DHU-Net: High-capacity binary data hiding network based on improved U-Net,” Neurocomputing, vol. 576, no. November 2023, p. 127314, Apr. 2024, doi: 10.1016/j.neucom.2024.127314.
P. N. Andono and D. R. I. M. Setiadi, “Quantization selection based on characteristic of cover image for PVD Steganography to optimize imperceptibility and capacity,” Multimed. Tools Appl., vol. 82, no. 3, pp. 3561–3580, Jan. 2023, doi: 10.1007/s11042-022-13393-y.
Z. Wang, X. Zhang, and Z. Yin, “Joint Cover-Selection and Payload-Allocation by Steganographic Distortion Optimization,” IEEE Signal Process. Lett., vol. 25, no. 10, pp. 1530–1534, 2018, doi: 10.1109/LSP.2018.2865888.
X. Li, D. Guo, and C. Qin, “Diversified Cover Selection for Image Steganography,” Symmetry (Basel)., vol. 15, no. 11, p. 2024, Nov. 2023, doi: 10.3390/sym15112024.
Z. Wang and X. Zhang, “Secure Cover Selection for Steganography,” IEEE Access, vol. 7, pp. 57857–57867, 2019, doi: 10.1109/ACCESS.2019.2914226.
Y. Yao, J. Wang, Q. Chang, Y. Ren, and W. Meng, “High invisibility image steganography with wavelet transform and generative adversarial network,” Expert Syst. Appl., vol. 249, no. PA, p. 123540, Sep. 2024, doi: 10.1016/j.eswa.2024.123540.
Ambika, Virupakshappa, and S. Veerashetty, “Secure communication over wireless sensor network using image steganography with generative adversarial networks,” Meas. Sensors, vol. 24, no. July, p. 100452, Dec. 2022, doi: 10.1016/j.measen.2022.100452.
X. Duan et al., “High-Capacity Image Steganography Based on Improved FC-DenseNet,” IEEE Access, vol. 8, pp. 170174–170182, 2020, doi: 10.1109/ACCESS.2020.3024193.
J. Zhu, R. Kaplan, J. Johnson, and L. Fei-Fei, “HiDDeN: Hiding Data With Deep Networks,” in Computer Vision – ECCV 2018, 2018, pp. 682–697. doi: 10.1007/978-3-030-01267-0_40.
K. A. Zhang, A. Cuesta-infante, L. Xu, K. Veeramachaneni, and J. Carlos, “SteganoGAN: High Capacity Image Steganography with GANs,” arXiv, Jan. 2019, [Online]. Available: http://arxiv.org/abs/1901.03892
Y. Zhou, T. Luo, Z. He, G. Jiang, H. Xu, and C.-C. Chang, “CAISFormer: Channel-wise attention transformer for image steganography,” Neurocomputing, vol. 603, no. July, p. 128295, Oct. 2024, doi: 10.1016/j.neucom.2024.128295.
L. Meng, X. Jiang, and T. Sun, “A review of coverless steganography,” Neurocomputing, vol. 566, p. 126945, Jan. 2024, doi: 10.1016/j.neucom.2023.126945.
Y. Zhang, Y. Chen, H. Dou, C. Tan, Y. Luo, and H. Sang, “Image steganography without embedding by carrier secret information for secure communication in networks,” PLoS One, vol. 19, no. 9, p. e0308265, Sep. 2024, doi: 10.1371/journal.pone.0308265.
X. Liu, Z. Ma, J. Ma, J. Zhang, G. Schaefer, and H. Fang, “Image Disentanglement Autoencoder for Steganography without Embedding,” in 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Jun. 2022, vol. 2022-June, pp. 2293–2302. doi: 10.1109/CVPR52688.2022.00234.
Digital Data Embedding Laboratory, “DDE Download Section,” DDE Laboratory Binghamton University. https://dde.binghamton.edu/download/
W. Li, H. Wang, Y. Chen, S. M. Abdullahi, and J. Luo, “Constructing Immunized Stego-Image for Secure Steganography via Artificial Immune System,” IEEE Trans. Multimed., vol. 25, pp. 8320–8333, 2023, doi: 10.1109/TMM.2023.3234812.
A. Gupta, “BOWS2,” Mendeley Data, 2023. https://data.mendeley.com/datasets/kb3ngxfmjw/1
Troyes University of Technology, “ALASKA2 Image Steganalysis,” Kaggle.com. https://www.kaggle.com/c/alaska2-image-steganalysis
W. Li, H. Wang, and Y. Chen, “From Cover to Immucover: Adversarial Steganography via Immunized Cover Construction,” IEEE Trans. Fuzzy Syst., vol. 32, no. 3, pp. 1233–1247, Mar. 2024, doi: 10.1109/TFUZZ.2023.3321740.
Y. Chen, H. Wang, W. Li, and W. Li, “A Steganography Immunoprocessing Framework Against CNN-Based and Handcrafted Steganalysis,” IEEE Trans. Inf. Forensics Secur., vol. 19, pp. 6055–6069, 2024, doi: 10.1109/TIFS.2024.3409075.
D. R. I. M. Setiadi, “PSNR vs SSIM: imperceptibility quality assessment for image steganography,” Multimed. Tools Appl., vol. 80, no. 6, pp. 8423–8444, Mar. 2021, doi: 10.1007/s11042-020-10035-z.
L. Xiang, R. Wang, Z. Yang, and Y. Liu, “Generative Linguistic Steganography: A Comprehensive Review,” KSII Trans. Internet Inf. Syst., vol. 16, no. 3, pp. 986–1005, Mar. 2022, doi: 10.3837/tiis.2022.03.013.
M. Knöchel and S. Karius, “Text Steganography Methods and their Influence in Malware: A Comprehensive Overview and Evaluation,” in Proceedings of the 2024 ACM Workshop on Information Hiding and Multimedia Security, Jun. 2024, pp. 113–124. doi: 10.1145/3658664.3659637.
M. A. Majeed, R. Sulaiman, Z. Shukur, and M. K. Hasan, “A Review on Text Steganography Techniques,” Mathematics, vol. 9, no. 21, p. 2829, Nov. 2021, doi: 10.3390/math9212829.
R. Yan, T. Song, and Y. Yang, “TokenFree: A Tokenization-Free Generative Linguistic Steganographic Approach with Enhanced Imperceptibility,” in 2024 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Oct. 2024, pp. 449–455. doi: 10.1109/SMC54092.2024.10831652.
Z. Ziegler, Y. Deng, and A. Rush, “Neural Linguistic Steganography,” in Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), Sep. 2019, pp. 1210–1215. doi: 10.18653/v1/D19-1115.
L. Xiang, J. Xia, Y. Liu, and Y. Gui, “CPG-LS: Causal Perception Guided Linguistic Steganography,” IEEE Signal Process. Lett., vol. 30, pp. 1762–1766, 2023, doi: 10.1109/LSP.2023.3332298.
P. Koehn, “CC-100: Monolingual Datasets from Web Crawl Data,” Statistical and Neural Machine Translation. https://data.statmt.org/cc-100/
H. Ueoka, Y. Murawaki, and S. Kurohashi, “Frustratingly Easy Edit-based Linguistic Steganography with a Masked Language Model,” arXiv. Apr. 20, 2021. [Online]. Available: http://arxiv.org/abs/2104.09833
X. Zheng and H. Wu, “Autoregressive Linguistic Steganography Based on BERT and Consistency Coding,” Secur. Commun. Networks, vol. 2022, pp. 1–11, May 2022, doi: 10.1155/2022/9092785.
K. Winstein, “Framework for Lexical Steganography.” 1998. [Online]. Available: https://web.mit.edu/keithw/tlex/lsteg.pdf
C.-C. Chang, “Reversible Linguistic Steganography With Bayesian Masked Language Modeling,” IEEE Trans. Comput. Soc. Syst., vol. 10, no. 2, pp. 714–723, Apr. 2023, doi: 10.1109/TCSS.2022.3162233.
T. Yang, H. Wu, B. Yi, G. Feng, and X. Zhang, “Semantic-Preserving Linguistic Steganography by Pivot Translation and Semantic-Aware Bins Coding,” IEEE Trans. Dependable Secur. Comput., vol. 21, no. 1, pp. 139–152, Jan. 2024, doi: 10.1109/TDSC.2023.3247493.
C. Ding, Z. Fu, Z. Yang, Q. Yu, D. Li, and Y. Huang, “Context-Aware Linguistic Steganography Model Based on Neural Machine Translation,” IEEE/ACM Trans. Audio, Speech, Lang. Process., vol. 32, pp. 868–878, 2024, doi: 10.1109/TASLP.2023.3340601.
L. Xiang, C. Ou, and D. Zeng, “Linguistic Steganography: Hiding Information in Syntax Space,” IEEE Signal Process. Lett., vol. 31, pp. 261–265, 2024, doi: 10.1109/LSP.2023.3347153.
M. V. Namitha, G. R. Manjula, and M. C. Belavagi, “StegAbb: A Cover-Generating Text Steganographic Tool Using GPT-3 Language Modeling for Covert Communication Across SDRs,” IEEE Access, vol. 12, pp. 82057–82067, 2024, doi: 10.1109/ACCESS.2024.3411288.
C. Ding, Z. Fu, Q. Yu, F. Wang, and X. Chen, “Joint Linguistic Steganography With BERT Masked Language Model and Graph Attention Network,” IEEE Trans. Cogn. Dev. Syst., vol. 16, no. 2, pp. 772–781, Apr. 2024, doi: 10.1109/TCDS.2023.3296413.
J. Tiedemann, “Parallel data, tools and interfaces in OPUS,” Proc. 8th Int. Conf. Lang. Resour. Eval. Lr. 2012, pp. 2214–2218, 2012.
Y. Qi, K. Chen, K. Zeng, W. Zhang, and N. Yu, “Provably Secure Disambiguating Neural Linguistic Steganography,” IEEE Trans. Dependable Secur. Comput., vol. PP, pp. 1–14, 2024, doi: 10.1109/TDSC.2024.3519322.
G. Hou, B. Ou, M. Long, and F. Peng, “Separable Reversible Data Hiding for Encrypted 3D Mesh Models Based on Octree Subdivision and Multi-MSB Prediction,” IEEE Trans. Multimed., vol. 26, pp. 2395–2407, 2024, doi: 10.1109/TMM.2023.3295578.
H. Zhou, K. Chen, Z. Ma, F. Wang, and W. Zhang, “Basic Concepts,” in Triangle Mesh Watermarking and Steganography, Singapore: Springer Nature Singapore, 2023, pp. 11–42. doi: 10.1007/978-981-19-7720-6_2.
G. Zhang, Z. Sui, C. Sun, Q. Liu, and X. Cheng, “A multi-layer mesh synchronized reversible data hiding algorithm on the 3D model,” Multimed. Syst., vol. 30, no. 1, p. 52, Feb. 2024, doi: 10.1007/s00530-023-01253-0.
H. Zhou, K. Chen, Z. Ma, F. Wang, and W. Zhang, “3D Mesh Steganography,” in Triangle Mesh Watermarking and Steganography, Singapore: Springer Nature Singapore, 2023, pp. 109–143. doi: 10.1007/978-981-19-7720-6_4.
Ying Yang, N. Peyerimhoff, and I. Ivrissimtzis, “Linear Correlations between Spatial and Normal Noise in Triangle Meshes,” IEEE Trans. Vis. Comput. Graph., vol. 19, no. 1, pp. 45–55, Jan. 2013, doi: 10.1109/TVCG.2012.106.
W. L. Hamilton, R. Ying, and J. Leskovec, “Inductive Representation Learning on Large Graphs,” Adv. Neural Inf. Process. Syst., vol. 2017-Decem, no. Nips, pp. 1025–1035, Jun. 2017, [Online]. Available: http://arxiv.org/abs/1706.02216
Z. Li and A. G. Bors, “3D mesh steganalysis using local shape features,” in 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Mar. 2016, pp. 2144–2148. doi: 10.1109/ICASSP.2016.7472056.
Z. Li and A. G. Bors, “Steganalysis of 3D objects using statistics of local feature sets,” Inf. Sci. (Ny)., vol. 415–416, pp. 85–99, Nov. 2017, doi: 10.1016/j.ins.2017.06.011.
W.-L. Lyu, L. Cheng, and Z. Yin, “High-capacity reversible data hiding in encrypted 3D mesh models based on multi-MSB prediction,” Signal Processing, vol. 201, p. 108686, Dec. 2022, doi: 10.1016/j.sigpro.2022.108686.
P. Shilane, P. Min, M. Kazhdan, and T. Funkhouser, “The princeton shape benchmark,” in Proceedings Shape Modeling Applications, 2004., 2004, vol. 08540, pp. 167–388. doi: 10.1109/SMI.2004.1314504.
G. Zhang, X. Cheng, F. Yang, A. Wang, X. Zhang, and L. Liu, “High-capacity multi-MSB predictive reversible data hiding in encrypted domain for triangular mesh models,” J. Vis. Commun. Image Represent., vol. 103, no. April, p. 104246, Aug. 2024, doi: 10.1016/j.jvcir.2024.104246.
Y. Zhang, J. Zhu, M. Xue, X. Zhang, and X. Cao, “Adaptive 3D Mesh Steganography Based on Feature-Preserving Distortion,” IEEE Trans. Vis. Comput. Graph., vol. 30, no. 8, pp. 5299–5312, Aug. 2024, doi: 10.1109/TVCG.2023.3289234.
Zhirong Wu et al., “3D ShapeNets: A deep representation for volumetric shapes,” in 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Jun. 2015, pp. 1912–1920. doi: 10.1109/CVPR.2015.7298801.
M. Levoy, “The Stanford 3D Scanning Repository,” Stanford University Computer Graphics Laboratory. http://graphics.stanford.edu/data/3Dscanrep/
X. Wang, J.-C. Liu, C.-C. Chang, and C.-C. Chang, “Reversible Data Hiding in Encrypted 3D Mesh Models Based on Multi-Group Partition and Closest Pair Prediction,” Futur. Internet, vol. 16, no. 6, p. 210, Jun. 2024, doi: 10.3390/fi16060210.
K. Gao, J.-H. Horng, and C.-C. Chang, “Reversible Data Hiding for Encrypted 3D Mesh Models With Secret Sharing Over Galois Field,” IEEE Trans. Multimed., vol. 26, pp. 5499–5510, 2024, doi: 10.1109/TMM.2023.3334972.
K. Gao, J. Horng, C.-C. Chang, and C. Chang, “Crypto-space steganography for 3D mesh models with greedy selection and shortest expansion,” Displays, vol. 87, no. August 2024, p. 102961, Apr. 2025, doi: 10.1016/j.displa.2024.102961.
W. Peng, K. Tang, W. Tang, Y. Su, M. Fang, and P. Li, “MeshPAD: Payload-aware mesh distortion for 3D steganography based on geometric deep learning,” Expert Syst. Appl., vol. 272, no. February, p. 126684, May 2025, doi: 10.1016/j.eswa.2025.126684.
H. Zhou, K. Chen, W. Zhang, Y. Yao, and N. Yu, “Distortion Design for Secure Adaptive 3-D Mesh Steganography,” IEEE Trans. Multimed., vol. 21, no. 6, pp. 1384–1398, Jun. 2019, doi: 10.1109/TMM.2018.2882088.
W. Thawornwichian, “OECD Framework for the Classification of AI systems,” Feb. 2022. doi: 10.1787/cb6d9eca-en.
“Europol: Internet Organised Crime Threat Assessment (IOCTA) 2021,” Comput. Fraud Secur., vol. 2021, no. 12, p. 4, Dec. 2021, doi: 10.1016/S1361-3723(21)00125-1.
R. Chaganti, V. Ravi, M. Alazab, and T. D. Pham, “Stegomalware: A Systematic Survey of MalwareHiding and Detection in Images, Machine LearningModels and Research Challenges,” arXiv. Oct. 06, 2021. [Online]. Available: http://arxiv.org/abs/2110.02504
L. Caviglione and W. Mazurczyk, “Never Mind the Malware, Here’s the Stegomalware,” IEEE Secur. Priv., vol. 20, no. 5, pp. 101–106, Sep. 2022, doi: 10.1109/MSEC.2022.3178205.
M. Brundage et al., “The Malicious Use of Artificial Intelligence: Forecasting, Prevention, and Mitigation,” arXiv. Feb. 20, 2018. [Online]. Available: http://arxiv.org/abs/1802.07228
X. Zhong, A. Dasgupta, and A. Tanvir, “Watermarking Language Models through Language Models,” arXiv. Nov. 07, 2024. [Online]. Available: http://arxiv.org/abs/2411.05091
E. Mitchell, Y. Lee, A. Khazatsky, C. D. Manning, and C. Finn, “DetectGPT: Zero-Shot Machine-Generated Text Detection using Probability Curvature,” arXiv. Jan. 26, 2023. [Online]. Available: http://arxiv.org/abs/2301.11305
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 De Rosal Ignatius Moses Setiadi, Sudipta Kr Ghosal, Aditya Kumar Sahu

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.