High-Performance Face Spoofing Detection using Feature Fusion of FaceNet and Tuned DenseNet201

Authors

DOI:

https://doi.org/10.62411/faith.3048-3719-62

Keywords:

Anti-spoofing, Augmentation effect, Biometric security, Data augmentation, FaceNet, Face recognition, Face spoofing detection, Feature fusion

Abstract

Face spoofing detection is critical for biometric security systems to prevent unauthorized access. This study proposes a deep learning-based approach integrating FaceNet and DenseNet201 to enhance face spoofing detection performance. FaceNet generates identity-based embeddings, ensuring robust facial feature representation, while DenseNet201 extracts complementary texture-based features. These features are fused using the Concatenate function to form a more comprehensive representation for im-proved classification. The proposed method is evaluated on two widely used face spoofing datasets, NUAA Photograph Imposter and LCC-FASD, achieving 100% accuracy on NUAA and 99% on LCC-FASD. Ablation studies reveal that data augmentation does not always enhance performance, particularly on high-complexity datasets such as LCC-FASD, where augmentation increases the False Rejection Rate (FRR). Conversely, DenseNet201 benefits more from augmentation, while the proposed method performs best without augmentation. Comparative analysis with previous studies further confirms the superiority of the proposed approach in reducing error rates, particularly Half Total Error Rate (HTER), False Acceptance Rate (FAR), and FRR. These findings indicate that combining identity-based embeddings and texture-based feature extraction significantly improves spoofing detection and enhances model robustness across different attack scenarios. This study advances biometric security by introducing an efficient feature fusion strategy that strengthens deep learning-based spoof detection. Future research may explore further optimization strategies and evaluate the approach on more diverse datasets to enhance generalization.

Downloads

Download data is not yet available.

Author Biographies

Leygian Reyhan Zuama, Universitas Dian Nuswantoro

Faculty of Computer Science, Univesitas Dian Nuswantoro, Semarang 50131, Indonesia

De Rosal Ignatius Moses Setiadi, Univesitas Dian Nuswantoro

Faculty of Computer Science, Univesitas Dian Nuswantoro, Semarang 50131, Indonesia

Research Center for Quantum Computing and Materials Informatics, Faculty of Computer Science, Dian Nuswantoro University, Semarang 50131, Indonesia

Ajib Susanto, Univesitas Dian Nuswantoro

Faculty of Computer Science, Univesitas Dian Nuswantoro, Semarang 50131, Indonesia

Stefanus Santosa, Politeknik Negeri Semarang

Civil Engineering Department, Politeknik Negeri Semarang, Central Java, Indonesia

Hong-Seng Gan, Xi’an Jiaotong -Liverpool University

School of AI and Advanced Computing, XJTLU Entrepreneur College (Taicang), Xi’an Jiaotong -Liverpool University, Suzhou, Jiangsu, P.R. China 215400

Arnold Adimabua Ojugo, Federal University of Petroleum Resources Effurun

Department of Computer Science, Federal University of Petroleum Resources Effurun, Nigeria

References

M. Prasad, S. Jain, P. Bhanodia, and A. Priya, “Influence of Standalone and Ensemble Classifiers in Face Spoofing Detection using LBP and CNN Models,” Eur. J. Electr. Eng. Comput. Sci., vol. 8, no. 2, pp. 17–30, Mar. 2024, doi: 10.24018/ejece.2024.8.2.604.

L. Li, P. L. Correia, and A. Hadid, “Face recognition under spoofing attacks: countermeasures and research directions,” IET Biometrics, vol. 7, no. 1, pp. 3–14, Jan. 2018, doi: 10.1049/iet-bmt.2017.0089.

I. U. W. Mulyono, D. R. I. M. Setiadi, A. Susanto, E. H. Rachmawanto, A. Fahmi, and Muljono, “Performance Analysis of Face Recognition using Eigenface Approach,” in Proceedings - 2019 International Seminar on Application for Technology of Information and Communication: Industry 4.0: Retrospect, Prospect, and Challenges, iSemantic 2019, Sep. 2019, pp. 12–16. doi: 10.1109/ISEMANTIC.2019.8884225.

V. Maheswari, C. A. Sari, D. R. I. M. Setiadi, and E. H. Rachmawanto, “Study Analysis of Human Face Recognition using Principal Component Analysis,” in 2020 International Seminar on Application for Technology of Information and Communication (iSemantic), Sep. 2020, pp. 55–60. doi: 10.1109/iSemantic50169.2020.9234250.

A. Pathirana et al., “A Reinforcement Learning-Based Approach for Promoting Mental Health Using Multimodal Emotion Recognition,” J. Futur. Artif. Intell. Technol., vol. 1, no. 2, pp. 124–142, Sep. 2024, doi: 10.62411/faith.2024-22.

K. Muhamada et al., “Exploring Machine Learning and Deep Learning Techniques for Occluded Face Recognition : A Comprehensive Survey and Comparative Analysis,” J. Futur. Artif. Intell. Technol., vol. 1, no. 2, pp. 160–173, Sep. 2024, doi: 10.62411/faith.2024-30.

A. Hadid, “Face Biometrics Under Spoofing Attacks: Vulnerabilities, Countermeasures, Open Issues, and Research Directions,” in 2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops, Jun. 2014, no. Cmv, pp. 113–118. doi: 10.1109/CVPRW.2014.22.

J. Komulainen, A. Hadid, M. Pietikainen, A. Anjos, and S. Marcel, “Complementary countermeasures for detecting scenic face spoofing attacks,” in 2013 International Conference on Biometrics (ICB), Jun. 2013, pp. 1–7. doi: 10.1109/ICB.2013.6612968.

D. Timoshenko, K. Simonchik, V. Shutov, P. Zhelezneva, and V. Grishkin, “Large Crowdcollected Facial Anti-Spoofing Dataset,” in 2019 Computer Science and Information Technologies (CSIT), Sep. 2019, pp. 123–126. doi: 10.1109/CSITechnol.2019.8895208.

J. Komulainen, A. Hadid, and M. Pietikäinen, “Face Spoofing Detection Using Dynamic Texture,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 7728 LNCS, no. PART 1, 2013, pp. 146–157. doi: 10.1007/978-3-642-37410-4_13.

R. Ruschel, L. R. Schardosim, and J. Scharcanski, “On the Data Conditioning for Facial Spoofing Attacks Detection using Deep Learning,” in 2019 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), May 2019, vol. 2019-May, no. September, pp. 1–6. doi: 10.1109/I2MTC.2019.8827094.

X. Liu, R. Lu, and W. Liu, “Face liveness detection based on enhanced local binary patterns,” in 2017 Chinese Automation Congress (CAC), Oct. 2017, vol. 2017-Janua, pp. 6301–6305. doi: 10.1109/CAC.2017.8243913.

R. D. Albu, “Face anti-spoofing based on Radon transform,” 2015 13th Int. Conf. Eng. Mod. Electr. Syst. EMES 2015, no. April, pp. 1–4, 2015, doi: 10.1109/EMES.2015.7158435.

M. R. Hasan, S. M. Hasan Mahmud, and X. Y. Li, “Face Anti-Spoofing Using Texture-Based Techniques and Filtering Methods,” J. Phys. Conf. Ser., vol. 1229, no. 1, p. 012044, May 2019, doi: 10.1088/1742-6596/1229/1/012044.

S. Kumar et al., “Face Spoofing, Age, Gender and Facial Expression Recognition Using Advance Neural Network Architecture-Based Biometric System,” Sensors, vol. 22, no. 14, p. 5160, Jul. 2022, doi: 10.3390/s22145160.

X. Tan, Y. Li, J. Liu, and L. Jiang, “Face Liveness Detection from a Single Image with Sparse Low Rank Bilinear Discriminative Model,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 6316 LNCS, no. PART 6, 2010, pp. 504–517. doi: 10.1007/978-3-642-15567-3_37.

P. Chaudhari, N. Kulkarni, and P. More, “AntiSpoofing for Facial Recognition Through Separable Convolution,” in 2021 IEEE Pune Section International Conference (PuneCon), Dec. 2021, pp. 1–4. doi: 10.1109/PuneCon52575.2021.9686544.

D. Sudha and M. Ramakrishna, “Comparative Study of Features Fusion Techniques,” in 2017 International Conference on Recent Advances in Electronics and Communication Technology (ICRAECT), Mar. 2017, pp. 235–239. doi: 10.1109/ICRAECT.2017.39.

H. Kibriya, R. Amin, A. H. Alshehri, M. Masood, S. S. Alshamrani, and A. Alshehri, “A Novel and Effective Brain Tumor Classification Model Using Deep Feature Fusion and Famous Machine Learning Classifiers,” Comput. Intell. Neurosci., vol. 2022, pp. 1–15, Mar. 2022, doi: 10.1155/2022/7897669.

B. Fernando, E. Fromont, D. Muselet, and M. Sebban, “Discriminative feature fusion for image classification,” in 2012 IEEE Conference on Computer Vision and Pattern Recognition, Jun. 2012, pp. 3434–3441. doi: 10.1109/CVPR.2012.6248084.

J. Yang, J. Y. Yang, D. Zhang, and J. F. Lu, “Feature fusion: Parallel strategy vs. serial strategy,” Pattern Recognit., vol. 36, no. 6, pp. 1369–1381, 2003, doi: 10.1016/S0031-3203(02)00262-5.

X. Shang, M. Song, and C. Yu, “Hyperspectral Image Classification With Background,” in IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium, Jul. 2019, pp. 2714–2717. doi: 10.1109/IGARSS.2019.8898520.

U. Mangai, S. Samanta, S. Das, and P. Chowdhury, “A Survey of Decision Fusion and Feature Fusion Strategies for Pattern Classification,” IETE Tech. Rev., vol. 27, no. 4, p. 293, 2010, doi: 10.4103/0256-4602.64604.

T. Janani and A. Ramanan, “Feature Fusion for Efficient Object Classification Using Deep and Shallow Learning,” Int. J. Mach. Learn. Comput., vol. 7, no. 5, pp. 123–127, Oct. 2017, doi: 10.18178/ijmlc.2017.7.5.633.

J. Singh, D. Thakur, T. Gera, B. Shah, T. Abuhmed, and F. Ali, “Classification and Analysis of Android Malware Images Using Feature Fusion Technique,” IEEE Access, vol. 9, pp. 90102–90117, 2021, doi: 10.1109/ACCESS.2021.3090998.

M. A. Aslam, M. N. Salik, F. Chughtai, N. Ali, S. H. Dar, and T. Khalil, “Image Classification Based on Mid-Level Feature Fusion,” in 2019 15th International Conference on Emerging Technologies (ICET), Dec. 2019, pp. 1–6. doi: 10.1109/ICET48972.2019.8994721.

S. Zhong et al., “Behavior Prediction for Unmanned Driving Based on Dual Fusions of Feature and Decision,” IEEE Trans. Intell. Transp. Syst., vol. 22, no. 6, pp. 3687–3696, Jun. 2021, doi: 10.1109/TITS.2020.3037926.

Z. Li, M. Xu, X. Yang, and Y. Han, “Multi-Label Fundus Image Classification Using Attention Mechanisms and Feature Fusion,” Micromachines, vol. 13, no. 6, p. 947, Jun. 2022, doi: 10.3390/mi13060947.

M. Abdar et al., “BARF: A new direct and cross-based binary residual feature fusion with uncertainty-aware module for medical image classification,” Inf. Sci. (Ny)., vol. 577, pp. 353–378, 2021, doi: 10.1016/j.ins.2021.07.024.

G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely Connected Convolutional Networks,” in 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Jul. 2017, pp. 2261–2269. doi: 10.1109/CVPR.2017.243.

M. S. Sunarjo, H. Gan, and D. R. I. M. Setiadi, “High-Performance Convolutional Neural Network Model to Identify COVID-19 in Medical Images,” J. Comput. Theor. Appl., vol. 1, no. 1, pp. 19–30, Aug. 2023, doi: 10.33633/jcta.v1i1.8936.

A. Susanto, I. U. W. Mulyono, C. A. Sari, E. H. Rachmawanto, D. R. I. M. Setiadi, and M. K. Sarker, “Improved Javanese script recognition using custom model of convolution neural network,” Int. J. Electr. Comput. Eng., vol. 13, no. 6, p. 6629, Dec. 2023, doi: 10.11591/ijece.v13i6.pp6629-6636.

F. Schroff, D. Kalenichenko, and J. Philbin, “FaceNet: A unified embedding for face recognition and clustering,” in 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Jun. 2015, vol. 07-12-June, pp. 815–823. doi: 10.1109/CVPR.2015.7298682.

I. William, D. R. I. M. Setiadi, E. H. Rachmawanto, H. A. Santoso, and C. A. Sari, “Face Recognition using FaceNet (Survey, Performance Test, and Comparison),” Proc. 2019 4th Int. Conf. Informatics Comput. ICIC 2019, Oct. 2019, doi: 10.1109/ICIC47613.2019.8985786.

E. Jose, M. Greeshma, T. P. Mithun Haridas, and M. H. Supriya, “Face Recognition based Surveillance System Using FaceNet and MTCNN on Jetson TX2,” 2019 5th Int. Conf. Adv. Comput. Commun. Syst. ICACCS 2019, pp. 608–613, 2019, doi: 10.1109/ICACCS.2019.8728466.

H.-C. Li, Z.-Y. Deng, and H.-H. Chiang, “Lightweight and Resource-Constrained Learning Network for Face Recognition with Performance Optimization,” Sensors, vol. 20, no. 21, p. 6114, Oct. 2020, doi: 10.3390/s20216114.

W.-C. Cheng, H.-C. Hsiao, Y.-Q. Hong, and D.-Y. Wang, “Masked face recognition based on facenet and genetic algorithm,” Int. J. Appl. Sci. Eng., vol. 20, no. 3, pp. 1–10, 2023, doi: 10.6703/IJASE.202309_20(3).005.

S. Peng, H. Huang, W. Chen, L. Zhang, and W. Fang, “More trainable inception-ResNet for face recognition,” Neurocomputing, vol. 411, pp. 9–19, Oct. 2020, doi: 10.1016/j.neucom.2020.05.022.

Y. Jiang, M. Ye, P. Wang, D. Huang, and X. Lu, “MRF-IUNet: A Multiresolution Fusion Brain Tumor Segmentation Network Based on Improved Inception U-Net,” Comput. Math. Methods Med., vol. 2022, pp. 1–8, Aug. 2022, doi: 10.1155/2022/6305748.

Z. Ming, J. Chazalon, M. M. Luqman, M. Visani, and J.-C. Burie, “Simple Triplet Loss Based on Intra/Inter-Class Metric Learning for Face Verification,” in 2017 IEEE International Conference on Computer Vision Workshops (ICCVW), Oct. 2017, vol. 2018-Janua, pp. 1656–1664. doi: 10.1109/ICCVW.2017.194.

M. Tang, Z. Huang, Y. Yuan, C. Wang, and Y. Peng, “A Bounded Scheduling Method for Adaptive Gradient Methods,” Appl. Sci., vol. 9, no. 17, p. 3569, Sep. 2019, doi: 10.3390/app9173569.

B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, “Learning Transferable Architectures for Scalable Image Recognition,” in 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Jun. 2018, pp. 8697–8710. doi: 10.1109/CVPR.2018.00907.

Q. Cao, L. Shen, W. Xie, O. M. Parkhi, and A. Zisserman, “VGGFace2: A Dataset for Recognising Faces across Pose and Age,” in 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), May 2018, pp. 67–74. doi: 10.1109/FG.2018.00020.

M. R. Golla and P. Sharma, “Performance Evaluation of Facenet on Low Resolution Face Images,” in Communications in Computer and Information Science, vol. 839, Springer Singapore, 2019, pp. 317–325. doi: 10.1007/978-981-13-2372-0_28.

H. L. Erik Learned-Miller, Gary B. Huang, Aruni RoyChowdhury, Hua, and Gang, Advances in Face Detection and Facial Image Analysis. Cham: Springer International Publishing, 2016. doi: 10.1007/978-3-319-25958-1.

Z. Zhou, M. Liu, W. Deng, Y. Wang, and Z. Zhu, “Clothing Image Classification with DenseNet201 Network and Optimized Regularized Random Vector Functional Link,” J. Nat. Fibers, vol. 20, no. 1, Apr. 2023, doi: 10.1080/15440478.2023.2190188.

K. Adam, I. I. Mohamed, and Y. Ibrahim, “A Selective Mitigation Technique of Soft Errors for DNN Models Used in Healthcare Applications: DenseNet201 Case Study,” IEEE Access, vol. 9, pp. 65803–65823, 2021, doi: 10.1109/ACCESS.2021.3076716.

S. Kumar, V. P. Singh, S. Pal, and P. Jaiswal, “Energy-efficient model ‘DenseNet201 based on deep convolutional neural network’ using cloud platform for detection of COVID-19 infected patients,” Epidemiol. Method., vol. 12, no. 1, p. 20210047, Jan. 2023, doi: 10.1515/em-2021-0047.

D. Nurfadhillah, G. Santoso, Fatimah, G. Murti Wibowo, Darmini, and Nuryatno, “Effectiveness of Automatic Detection of Osteoarthritis using Convolutional Neural Network (CNN) Method with DenseNet201 on Digital Images of Knee Joint Radiography,” E3S Web Conf., vol. 448, p. 02052, Nov. 2023, doi: 10.1051/e3sconf/202344802052.

G. Huang, Z. Liu, G. Pleiss, L. van der Maaten, and K. Q. Weinberger, “Convolutional Networks with Dense Connectivity,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 44, no. 12, pp. 8704–8716, Dec. 2022, doi: 10.1109/TPAMI.2019.2918284.

X. Feng, H. Yao, and S. Zhang, “An efficient way to refine DenseNet,” Signal, Image Video Process., vol. 13, no. 5, pp. 959–965, Jul. 2019, doi: 10.1007/s11760-019-01433-4.

A. Hess, “Exploring Feature Reuse in DenseNet Architectures,” arXiv. 2018. [Online]. Available: http://arxiv.org/abs/1806.01935

I. Kreso, J. Krapac, and S. Segvic, “Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images,” IEEE Trans. Intell. Transp. Syst., vol. 22, no. 8, pp. 4951–4961, Aug. 2021, doi: 10.1109/TITS.2020.2984894.

S. A. Samad and J. Gitanjali, “Augmenting DenseNet: Leveraging Multi-Scale Skip Connections for Effective Early-Layer Information Incorporation,” IEEE Access, vol. 12, no. July, pp. 141344–141360, 2024, doi: 10.1109/ACCESS.2024.3460830.

B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba, “Learning Deep Features for Discriminative Localization,” in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Jun. 2016, pp. 2921–2929. doi: 10.1109/CVPR.2016.319.

S.-G. Y. Su-Gyeong Yu, S.-E. K. Su-Gyeong Yu, K. H. S. So-Eui Kim, and E. C. L. Kun Ha Suh, “Effect of Facial Shape Information Reflected on Learned Features in Face Spoofing Detection,” 網際網路技術學刊, vol. 23, no. 3, pp. 517–525, May 2022, doi: 10.53106/160792642022052303010.

S.-G. Yu, S.-E. Kim, K. H. Suh, and E. C. Lee, “Face Spoofing Detection Using DenseNet,” in International Conference on Intelligent Human Computer Interaction, 2021, pp. 229–238. doi: 10.1007/978-3-030-68452-5_24.

D. Wang and X. Chen, “Research on Feature Fusion Method Based on Graph Convolutional Networks,” Appl. Sci., vol. 14, no. 13, p. 5612, Jun. 2024, doi: 10.3390/app14135612.

Y. Dai, F. Gieseke, S. Oehmcke, Y. Wu, and K. Barnard, “Attentional Feature Fusion,” in 2021 IEEE Winter Conference on Applications of Computer Vision (WACV), Jan. 2021, pp. 3559–3568. doi: 10.1109/WACV48630.2021.00360.

A. Ahmed and S. Mohamed, “Implementation of early and late fusion methods for content-based image retrieval,” Int. J. Adv. Appl. Sci., vol. 8, no. 7, pp. 97–105, Jul. 2021, doi: 10.21833/ijaas.2021.07.012.

Y. Wei, D. Wu, and J. Terpenny, “Decision-Level Data Fusion in Quality Control and Predictive Maintenance,” IEEE Trans. Autom. Sci. Eng., vol. 18, no. 1, pp. 184–194, Jan. 2021, doi: 10.1109/TASE.2020.2964998.

K. Hu, L. Li, X. Tao, J. D. Velásquez, and P. Delaney, “Information fusion in crime event analysis: A decade survey on data, features and models,” Inf. Fusion, vol. 100, no. May, p. 101904, Dec. 2023, doi: 10.1016/j.inffus.2023.101904.

S. Zhai, D. Shang, S. Wang, and S. Dong, “DF-SSD: An Improved SSD Object Detection Algorithm Based on DenseNet and Feature Fusion,” IEEE Access, vol. 8, pp. 24344–24357, 2020, doi: 10.1109/ACCESS.2020.2971026.

Y. Zhou, Y. Liu, G. Han, and Z. Zhang, “Face Recognition Based on Global and Local Feature Fusion,” in 2019 IEEE Symposium Series on Computational Intelligence (SSCI), Dec. 2019, pp. 2771–2775. doi: 10.1109/SSCI44817.2019.9003045.

K. P. Zaw and A. Mon, “Enhanced Multi-Class Skin Lesion Classification of Dermoscopic Images Using an Ensemble of Deep Learning Models,” J. Comput. Theor. Appl., vol. 2, no. 2, pp. 256–267, Nov. 2024, doi: 10.62411/jcta.11530.

H. T. Adityawan, O. Farroq, S. Santosa, H. M. M. Islam, M. K. Sarker, and D. R. I. M. Setiadi, “Butterflies Recognition using Enhanced Transfer Learning and Data Augmentation,” J. Comput. Theor. Appl., vol. 1, no. 2, pp. 115–128, Nov. 2023, doi: 10.33633/jcta.v1i2.9443.

M. A. Hambali and P. A. Agwu, “Adversarial Convolutional Neural Network for Predicting Blood Clot Ischemic Stroke,” J. Comput. Theor. Appl., vol. 2, no. 1, pp. 51–64, Jun. 2024, doi: 10.62411/jcta.10516.

F. M. Firnando, D. R. I. M. Setiadi, A. R. Muslikh, and S. W. Iriananda, “Analyzing InceptionV3 and InceptionResNetV2 with Data Augmentation for Rice Leaf Disease Classification,” J. Futur. Artif. Intell. Technol., vol. 1, no. 1, pp. 1–11, May 2024, doi: 10.62411/faith.2024-4.

A. Mumuni and F. Mumuni, “Data augmentation: A comprehensive survey of modern approaches,” Array, vol. 16, p. 100258, Dec. 2022, doi: 10.1016/j.array.2022.100258.

R. Cai, C. Soh, Z. Yu, H. Li, W. Yang, and A. C. Kot, “Towards Data-Centric Face Anti-spoofing: Improving Cross-Domain Generalization via Physics-Based Data Synthesis,” Int. J. Comput. Vis., Oct. 2024, doi: 10.1007/s11263-024-02240-2.

P. Kirichenko et al., “Understanding the Detrimental Class-level Effects of Data Augmentation,” in 37th Conference on Neural Information Processing Systems (NeurIPS 2023), 2023, vol. 36. [Online]. Available: https://proceedings.neurips.cc/paper_files/paper/2023/file/38c05a5410a6ab7eeeb26c9dbebbc41b-Paper-Conference.pdf

A. Bakshi, S. Gupta, A. Gupta, S. Tanwar, and K. Hsiao, “3T‐FASDM: Linear discriminant analysis‐based three‐tier face anti‐spoofing detection model using support vector machine,” Int. J. Commun. Syst., vol. 33, no. 12, Aug. 2020, doi: 10.1002/dac.4441.

L. Feng et al., “Integration of image quality and motion cues for face anti-spoofing: A neural network approach,” J. Vis. Commun. Image Represent., vol. 38, pp. 451–460, Jul. 2016, doi: 10.1016/j.jvcir.2016.03.019.

H. Kim, J. Lee, Y. Jeong, H. Jang, and Y. Yoo, “Advancing Cross-Domain Generalizability in Face Anti-Spoofing: Insights, Design, and Metrics,” in 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Jun. 2024, pp. 970–979. doi: 10.1109/CVPRW63382.2024.00102.

F. Mazhar, N. Aslam, A. Naeem, H. Ahmad, M. Fuzail, and M. Imran, “Enhanced Diagnosis of Skin Cancer from Dermoscopic Images Using Alignment Optimized Convolutional Neural Networks and Grey Wolf Optimization,” J. Comput. Theor. Appl., vol. 2, no. 3, pp. 368–382, Jan. 2025, doi: 10.62411/jcta.11954.

M. Ha, “Top-Heavy CapsNets Based on Spatiotemporal Non-Local for Action Recognition,” J. Comput. Theor. Appl., vol. 2, no. 1, pp. 39–50, May 2024, doi: 10.62411/jcta.10551.

Downloads

Published

2025-02-12

How to Cite

[1]
L. R. Zuama, D. R. I. M. Setiadi, A. Susanto, S. Santosa, H.-S. Gan, and A. A. Ojugo, “High-Performance Face Spoofing Detection using Feature Fusion of FaceNet and Tuned DenseNet201”, J. Fut. Artif. Intell. Tech., vol. 1, no. 4, pp. 385–400, Feb. 2025.

Issue

Section

Articles

Similar Articles

1 2 3 4 > >> 

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)

1 2 > >>