Exploring Machine Learning and Deep Learning Techniques for Occluded Face Recognition: A Comprehensive Survey and Comparative Analysis
DOI:
https://doi.org/10.62411/faith.2024-30Keywords:
DeepFace, Face Recognition, FaceNet, FisherFace, Occluded Face Recognition, Obstructed Face RecognitionAbstract
Face recognition occluded by occlusions, such as glasses or shadows, remains a challenge in many security and surveillance applications. This study aims to analyze the performance of various machine learning and deep learning techniques in face recognition scenarios with occlusions. We evaluate KNN (standard and FisherFace), CNN, DenseNet, Inception, and FaceNet methods combined with a pre-trained DeepFace model using three public datasets: YALE, Essex Grimace, and Georgia Tech. The results show that KNN maintains the highest accuracy, reaching 100% on two datasets (Essex Grimace and YALE), even in the presence of occlusions. Meanwhile, CNN shows strong performance, with accuracy remaining 100% on YALE, both with and without occlusions, although its performance drops slightly on Essex Grimace (94% with occlusion). DenseNet and Inception show a more significant drop in accuracy when faced with occlusion, with DenseNet dropping from 81% to 72% on Essex Grimace and Inception dropping from 100% to 92% on the same dataset. FaceNet + DeepFace excels on more large dataset (Georgia Tech) with 98% accuracy, but its performance drops dramatically to 53% and 70% on Essex Grimace and YALE with occlusion. These findings indicate that while deep learning methods show high accuracy under ideal conditions, machine learning methods such as KNN are more flexible and robust to occlusion in face recognition.
Downloads
References
A. Verma, “Crime Detection System Using Face Recognition,” Indian J. Appl. Res., pp. 40–42, Sep. 2022, doi: 10.36106/ijar/8212604.
K. P. Teja, G. D. Kumar, and T. P. Jacob, “Face Detection and Recognition for Criminal Identification,” in 2023 8th International Conference on Communication and Electronics Systems (ICCES), Jun. 2023, pp. 1431–1435. doi: 10.1109/ICCES57224.2023.10192845.
L. Li, X. Mu, S. Li, and H. Peng, “A Review of Face Recognition Technology,” IEEE Access, vol. 8, pp. 139110–139120, 2020, doi: 10.1109/ACCESS.2020.3011028.
R. Sithara and R. Rajasree, “A survey on Face Recognition Technique,” in 2019 IEEE International Conference on Innovations in Communication, Computing and Instrumentation (ICCI), Mar. 2019, pp. 189–192. doi: 10.1109/ICCI46240.2019.9404387.
D. Balakrishnan, U. Mariappan, S. Dharani, Y. Rajyalakshmi, and S. Sravani, “A face recognition and intelligent home automation system,” in International Conference on Mathematics and its Applications in Technology, 2024, p. 030015. doi: 10.1063/5.0224836.
K. Madhushree et al., “Development of a highly capable robotic dog with enhanced sensory and communication abilities for military applications,” in International Conference on Condensed Matter and Applied Physics, 2024, p. 140029. doi: 10.1063/5.0225346.
M. Eliazer, Y. Mudgil, and D. G. Bachu, “Smart CCTV camera surveillance system,” in 4th International Conference on Internet of Things, 2024, p. 020132. doi: 10.1063/5.0217281.
A. Y. Felix, S. Vignesh, and M. J. Andrew, “Mobile application and QR code for attendance system,” in 4th International Conference on Internet of Things, 2024, p. 020236. doi: 10.1063/5.0217048.
A. Pathirana, D. K. Rajakaruna, D. Kasthurirathna, A. Atukorale, R. Aththidiye, and M. Yatiipansalawa, “A Reinforcement Learning-Based Approach for Promoting Mental Health Using Multimodal Emotion Recognition,” J. Futur. Artif. Intell. Technol., vol. 1, no. 2, pp. 124–141, 2024, doi: 10.62411/faith.2024-22.
R. Ravi, S. . Yadhukrishna, and R. Prithviraj, “A Face Expression Recognition Using CNN & LBP,” in 2020 Fourth International Conference on Computing Methodologies and Communication (ICCMC), Mar. 2020, pp. 684–689. doi: 10.1109/ICCMC48092.2020.ICCMC-000127.
R. Gupta, A. S. Shekhawat, M. S. Anand, and P. Selvaraj, “Face expression recognition master using convolutional neural network,” in 4th International Conference on Internet of Things, 2024, p. 020069. doi: 10.1063/5.0217855.
I. U. W. Mulyono, D. R. I. M. Setiadi, A. Susanto, E. H. Rachmawanto, A. Fahmi, and Muljono, “Performance Analysis of Face Recognition using Eigenface Approach,” in Proceedings - 2019 International Seminar on Application for Technology of Information and Communication: Industry 4.0: Retrospect, Prospect, and Challenges, iSemantic 2019, Sep. 2019, pp. 12–16. doi: 10.1109/ISEMANTIC.2019.8884225.
G. E. Rani, S. M, M. P. Suresh, M. Abhiram, K. J. Surya, and B. Y. A. N. Kumar, “Face Recognition Using Principal Component Analysis,” in 2022 2nd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE), Apr. 2022, pp. 932–936. doi: 10.1109/ICACITE53722.2022.9823434.
Y. Kortli, M. Jridi, A. Al Falou, and M. Atri, “Face Recognition Systems: A Survey,” Sensors, vol. 20, no. 2, p. 342, Jan. 2020, doi: 10.3390/s20020342.
D. Kurniadi, A. Sugiyono, and L. A. Wardaya, “Pattern Recognition of Human Face With Photos Using KNN Algorithm,” J. Transform., vol. 19, no. 1, p. 17, Jul. 2021, doi: 10.26623/transformatika.v19i1.3581.
Z. Li, F. Liu, W. Yang, S. Peng, and J. Zhou, “A Survey of Convolutional Neural Networks: Analysis, Applications, and Prospects,” IEEE Trans. Neural Networks Learn. Syst., vol. 33, no. 12, pp. 6999–7019, Dec. 2022, doi: 10.1109/TNNLS.2021.3084827.
K. Gowri and B. L. Shivakumar, “Dwindling DCNN Training Time and Improving Authentication by Spurring Algorithm in Cloud Computing,” Int. J. Intell. Eng. Syst., vol. 17, no. 3, pp. 503–514, Jun. 2024, doi: 10.22266/ijies2024.0630.39.
P. Ghadekar, M. Ranjan Pradhan, D. Swain, and B. Acharya, “EmoSecure: Enhancing Smart Home Security With FisherFace Emotion Recognition and Biometric Access Control,” IEEE Access, vol. 12, pp. 93133–93144, 2024, doi: 10.1109/ACCESS.2024.3423783.
L. Patil and V. D. Mytri, “Face Recognition with CNN and Inception Deep Learning Models,” Int. J. Recent Technol. Eng., vol. 8, no. 3, pp. 1932–1938, Sep. 2019, doi: 10.35940/ijrte.C4476.098319.
A. Waheed, M. Goyal, D. Gupta, A. Khanna, A. E. Hassanien, and H. M. Pandey, “An optimized dense convolutional neural network model for disease recognition and classification in corn leaf,” Comput. Electron. Agric., vol. 175, p. 105456, Aug. 2020, doi: 10.1016/j.compag.2020.105456.
N. Becherer, J. Pecarina, S. Nykl, and K. Hopkinson, “Improving optimization of convolutional neural networks through parameter fine-tuning,” Neural Comput. Appl., vol. 31, no. 8, pp. 3469–3479, Aug. 2019, doi: 10.1007/s00521-017-3285-0.
I. William, D. R. Ignatius Moses Setiadi, E. H. Rachmawanto, H. A. Santoso, and C. A. Sari, “Face Recognition using FaceNet (Survey, Performance Test, and Comparison),” in Proceedings of 2019 4th International Conference on Informatics and Computing, ICIC 2019, Oct. 2019. doi: 10.1109/ICIC47613.2019.8985786.
S. Zhang, “Cost-sensitive KNN classification,” Neurocomputing, vol. 391, pp. 234–242, May 2020, doi: 10.1016/j.neucom.2018.11.101.
M. A. Araaf, K. Nugroho, and D. R. I. M. Setiadi, “Comprehensive Analysis and Classification of Skin Diseases based on Image Texture Features using K-Nearest Neighbors Algorithm,” J. Comput. Theor. Appl., vol. 1, no. 1, pp. 31–40, Sep. 2023, doi: 10.33633/jcta.v1i1.9185.
J. Gou, W. Qiu, Z. Yi, Y. Xu, Q. Mao, and Y. Zhan, “A Local Mean Representation-based K -Nearest Neighbor Classifier,” ACM Trans. Intell. Syst. Technol., vol. 10, no. 3, pp. 1–25, May 2019, doi: 10.1145/3319532.
R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification, 2nd ed. Nashville, TN: John Wiley & Sons, 2000.
P. N. Belhumeur, J. P. Hespanha, and D. J. Kriegman, “Eigenfaces vs. Fisherfaces: recognition using class specific linear projection,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 19, no. 7, pp. 711–720, Jul. 1997, doi: 10.1109/34.598228.
M. Turk and A. Pentland, “Eigenfaces for Recognition,” J. Cogn. Neurosci., vol. 3, no. 1, pp. 71–86, Jan. 1991, doi: 10.1162/jocn.1991.3.1.71.
M. S. Sunarjo, H. Gan, and D. R. I. M. Setiadi, “High-Performance Convolutional Neural Network Model to Identify COVID-19 in Medical Images,” J. Comput. Theor. Appl., vol. 1, no. 1, pp. 19–30, Aug. 2023, doi: 10.33633/jcta.v1i1.8936.
H. T. Adityawan, O. Farroq, S. Santosa, H. M. M. Islam, M. K. Sarker, and D. R. I. M. Setiadi, “Butterflies Recognition using Enhanced Transfer Learning and Data Augmentation,” J. Comput. Theor. Appl., vol. 1, no. 2, pp. 115–128, Nov. 2023, doi: 10.33633/jcta.v1i2.9443.
M. T. H. Khan Tusar, M. T. Islam, A. H. Sakil, M. N. H. N. Khandaker, and M. M. Hossain, “An Intelligent Telediagnosis of Acute Lymphoblastic Leukemia using Histopathological Deep Learning,” J. Comput. Theor. Appl., vol. 2, no. 1, pp. 1–12, May 2024, doi: 10.62411/jcta.10358.
S. Fanijo, “AI4CRC: A Deep Learning Approach Towards Preventing Colorectal Cancer,” J. Futur. Artif. Intell. Technol., vol. 1, no. 2, pp. 143–159, 2024, doi: 10.62411/faith.2024-28.
A. Amorim, T. Morehouse, D. Kasilingam, R. Zhou, and N. Magotra, “CNN-based AMC for Internet of Underwater Things,” in 2021 IEEE International Midwest Symposium on Circuits and Systems (MWSCAS), Aug. 2021, pp. 688–691. doi: 10.1109/MWSCAS47672.2021.9531853.
T. Huynh-The, C.-H. Hua, Q.-V. Pham, and D.-S. Kim, “MCNet: An Efficient CNN Architecture for Robust Automatic Modulation Classification,” IEEE Commun. Lett., vol. 24, no. 4, pp. 811–815, Apr. 2020, doi: 10.1109/LCOMM.2020.2968030.
S. Ioffe and C. Szegedy, “Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift,” arXiv. Feb. 10, 2015. [Online]. Available: http://arxiv.org/abs/1502.03167
F. M. Firnando, D. R. I. M. Setiadi, A. R. Muslikh, and S. W. Iriananda, “Analyzing InceptionV3 and InceptionResNetV2 with Data Augmentation for Rice Leaf Disease Classification,” J. Futur. Artif. Intell. Technol., vol. 1, no. 1, pp. 1–11, May 2024, doi: 10.62411/faith.2024-4.
G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely Connected Convolutional Networks,” in 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Jul. 2017, pp. 2261–2269. doi: 10.1109/CVPR.2017.243.
C. Szegedy et al., “Rethinking the Inception Architecture for Computer Vision,” in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Jun. 2016, pp. 2818–2826. doi: 10.1109/CVPR.2016.308.
M. S. Uddin and W. Slany, “Visual Programming for Human Detection Using FaceNet in Pocket Code,” Int. J. Interact. Mob. Technol., vol. 18, no. 13, pp. 179–194, Jul. 2024, doi: 10.3991/ijim.v18i13.49277.
J. A. Mensah, J. K. Appati, E. K. . Boateng, E. Ocran, and L. Asiedu, “FaceNet recognition algorithm subject to multiple constraints: Assessment of the performance,” Sci. African, vol. 23, p. e02007, Mar. 2024, doi: 10.1016/j.sciaf.2023.e02007.
H.-C. Li, Z.-Y. Deng, and H.-H. Chiang, “Lightweight and Resource-Constrained Learning Network for Face Recognition with Performance Optimization,” Sensors, vol. 20, no. 21, p. 6114, Oct. 2020, doi: 10.3390/s20216114.
Y. Taigman, M. Yang, M. Ranzato, and L. Wolf, “DeepFace: Closing the Gap to Human-Level Performance in Face Verification,” in 2014 IEEE Conference on Computer Vision and Pattern Recognition, Jun. 2014, pp. 1701–1708. doi: 10.1109/CVPR.2014.220.
H. Phan, C. X. Le, V. Le, Y. He, and A. T. Nguyen, “Fast and Interpretable Face Identification for Out-Of-Distribution Data Using Vision Transformers,” in 2024 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), Jan. 2024, pp. 6289–6299. doi: 10.1109/WACV57701.2024.00618.
B. Pang, E. Nijkamp, and Y. N. Wu, “Deep Learning With TensorFlow: A Review,” J. Educ. Behav. Stat., vol. 45, no. 2, pp. 227–248, Apr. 2020, doi: 10.3102/1076998619872761.
T. X. Truong et al., “A New Approach Based on TensorFlow Deep Neural Networks with ADAM Optimizer and GIS for Spatial Prediction of Forest Fire Danger in Tropical Areas,” Remote Sens., vol. 15, no. 14, p. 3458, Jul. 2023, doi: 10.3390/rs15143458.
F. Chollet, Deep learning with python. New York, NY: Manning Publications, 2022.
N. P. Jouppi et al., “In-Datacenter Performance Analysis of a Tensor Processing Unit,” in Proceedings of the 44th Annual International Symposium on Computer Architecture, Jun. 2017, pp. 1–12. doi: 10.1145/3079856.3080246.
O. Jaiyeoba, E. Ogbuju, O. T. Yomi, and F. Oladipo, “Development of a Model to Classify Skin Diseases using Stacking Ensemble Machine Learning Techniques,” J. Comput. Theor. Appl., vol. 2, no. 1, pp. 22–38, May 2024, doi: 10.62411/jcta.10488.
M. Ha, “Top-Heavy CapsNets Based on Spatiotemporal Non-Local for Action Recognition,” J. Comput. Theor. Appl., vol. 2, no. 1, pp. 39–50, May 2024, doi: 10.62411/jcta.10551.
I. Cheheb, “An Investigation into the Impact of Occlusion on Facial Emotion Recognition in the Wild,” in Proceedings of the 17th International Conference on PErvasive Technologies Related to Assistive Environments, Jun. 2024, pp. 365–368. doi: 10.1145/3652037.3663932.
D. Ballabio, F. Grisoni, and R. Todeschini, “Multivariate comparison of classification performance measures,” Chemom. Intell. Lab. Syst., vol. 174, pp. 33–44, Mar. 2018, doi: 10.1016/j.chemolab.2017.12.004.
R. E. Ako et al., “Effects of Data Resampling on Predicting Customer Churn via a Comparative Tree-based Random Forest and XGBoost,” J. Comput. Theor. Appl., vol. 2, no. 1, pp. 86–101, Jun. 2024, doi: 10.62411/jcta.10562.
A. N. Safriandono, D. R. I. M. Setiadi, A. Dahlan, F. Z. Rahmanti, I. S. Wibisono, and A. A. Ojugo, “Analyzing Quantum Feature Engineering and Balancing Strategies Effect on Liver Disease Classification,” J. Futur. Artif. Intell. Technol., vol. 1, no. 1, pp. 51–63, Jun. 2024, doi: 10.62411/faith.2024-12.
A. Sikarwar, H. Chandra, and I. Ram, “Real-Time Biometric Verification and Management System Using Face Embeddings,” in 2020 IEEE 17th India Council International Conference (INDICON), Dec. 2020, pp. 1–4. doi: 10.1109/INDICON49873.2020.9342551.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Journal of Future Artificial Intelligence and Technologies
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.