AI4CRC: A Deep Learning Approach Towards Preventing Colorectal Cancer
DOI:
https://doi.org/10.62411/faith.2024-28Keywords:
Colonoscopy, Colorectal Cancer, Deep Learning, Digital Health, Transfer LearningAbstract
Each year, more than 1.9 million cases of colorectal cancer (CRC) are diagnosed worldwide. By 2040, the burden of colorectal cancer is estimated to reach 3.2 million new cases per year and 1.6 million deaths per year worldwide. As of 2024, it ranks as the third most prevalent form of cancer, contributing to over 10% of all new cancer cases annually, with a 5-year survival rate of only 65%. With effective early detection mechanisms in place, the survival rate could potentially increase to 90%. However, current detection mechanisms are manual and error-prone.
This study presents a deep learning-based approach to automating the detection of polyps, the tumor that causes colorectal cancer, in the human colon. Various state-of-the-art deep learning models – including VGG, ResNet, DenseNet, and EfficientNet were trained and tested on a publicly available dataset. The findings of this study show that deep learning models can significantly automate the early diagnosis process of colorectal cancer with high accuracy, especially the DenseNet and EfficientNet models – attaining 99% and 99.4% respectively for both accuracy and F1 score metrics on the test dataset. This study validates the potential of deep learning to enhance the accuracy and reliability of colorectal cancer detection and prevention, ultimately contributing to better quality of diagnosis and patient outcomes.
Downloads
References
National Cancer Institute, “Cancer stat facts: Colorectal cancer,” SEER. https://seer.cancer.gov/statfacts/html/colorect.html (accessed Aug. 01, 2024).
R. L. Siegel, K. D. Miller, and A. Jemal, “Cancer statistics, 2019,” CA. Cancer J. Clin., vol. 69, no. 1, pp. 7–34, Jan. 2019, doi: 10.3322/caac.21551.
A. Jacovi, O. S. Shalom, and Y. Goldberg, “Understanding Convolutional Neural Networks for Text Classification,” in Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP, Sep. 2018, pp. 56–65. [Online]. Available: http://arxiv.org/abs/1809.08037
H. Zhu, Y. Fan, and Z. Liang, “Improved Curvature Estimation for Shape Analysis in Computer-Aided Detection of Colonic Polyps,” in Virtual Colonoscopy and Abdominal Imaging. Computational Challenges and Clinical Opportunities, 2011, pp. 9–14. doi: 10.1007/978-3-642-25719-3_2.
K. Abdeljawad, K. C. Vemulapalli, C. J. Kahi, O. W. Cummings, D. C. Snover, and D. K. Rex, “Sessile serrated polyp prevalence determined by a colonoscopist with a high lesion detection rate and an experienced pathologist,” Gastrointest. Endosc., vol. 81, no. 3, pp. 517–524, Mar. 2015, doi: 10.1016/j.gie.2014.04.064.
H. Irshad, A. Veillard, L. Roux, and D. Racoceanu, “Methods for Nuclei Detection, Segmentation, and Classification in Digital Histopathology: A Review—Current Status and Future Potential,” IEEE Rev. Biomed. Eng., vol. 7, pp. 97–114, 2014, doi: 10.1109/RBME.2013.2295804.
M. Veta et al., “Assessment of algorithms for mitosis detection in breast cancer histopathology images,” Med. Image Anal., vol. 20, no. 1, pp. 237–248, Feb. 2015, doi: 10.1016/j.media.2014.11.010.
S. A. Karkanis, D. K. Iakovidis, D. E. Maroulis, D. A. Karras, and M. Tzivras, “Computer-aided tumor detection in endoscopic video using color wavelet features,” IEEE Trans. Inf. Technol. Biomed., vol. 7, no. 3, pp. 141–152, Sep. 2003, doi: 10.1109/TITB.2003.813794.
Peng Li, Kap Luk Chan, and S. M. Krishnan, “Learning a Multi-Size Patch-Based Hybrid Kernel Machine Ensemble for Abnormal Region Detection in Colonoscopic Images,” in 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), 2005, vol. 2, pp. 670–675. doi: 10.1109/CVPR.2005.201.
Wikimedia Commons, “Category: Intestines.” https://commons.wikimedia.org/wiki/Category:Intestines (accessed Aug. 01, 2024).
J. Bernal, J. Sánchez, and F. Vilariño, “Towards automatic polyp detection with a polyp appearance model,” Pattern Recognit., vol. 45, no. 9, pp. 3166–3182, Sep. 2012, doi: 10.1016/j.patcog.2012.03.002.
G. Chartrand et al., “Deep Learning: A Primer for Radiologists,” RadioGraphics, vol. 37, no. 7, pp. 2113–2131, Nov. 2017, doi: 10.1148/rg.2017170077.
H. Zhu, Y. Fan, H. Lu, and Z. Liang, “Improved Curvature Estimation for Computer-aided Detection of Colonic Polyps in CT Colonography,” Acad. Radiol., vol. 18, no. 8, pp. 1024–1034, Aug. 2011, doi: 10.1016/j.acra.2011.03.012.
M. P. Tjoa and S. M. Krishnan, “Feature extraction for the analysis of colon status from the endoscopic images,” Biomed. Eng. Online, vol. 2, no. 1, p. 9, Apr. 2003, doi: 10.1186/1475-925X-2-9.
S. Ameling, S. Wirth, D. Paulus, G. Lacey, and F. Vilarino, “Texture-Based Polyp Detection in Colonoscopy,” in Bildverarbeitung für die Medizin 2009, 2009, pp. 346–350. doi: 10.1007/978-3-540-93860-6_70.
A. Janowczyk and A. Madabhushi, “Deep learning for digital pathology image analysis: A comprehensive tutorial with selected use cases,” J. Pathol. Inform., vol. 7, no. 1, p. 29, Jan. 2016, doi: 10.4103/2153-3539.186902.
B. Korbar et al., “Deep Learning for Classification of Colorectal Polyps on Whole-slide Images,” J. Pathol. Inform., vol. 8, no. 1, p. 30, Jan. 2017, doi: 10.4103/jpi.jpi_34_17.
M. Oquab, L. Bottou, I. Laptev, and J. Sivic, “Learning and Transferring Mid-level Image Representations Using Convolutional Neural Networks,” in 2014 IEEE Conference on Computer Vision and Pattern Recognition, Jun. 2014, pp. 1717–1724. doi: 10.1109/CVPR.2014.222.
N. Tajbakhsh et al., “Convolutional Neural Networks for Medical Image Analysis: Full Training or Fine Tuning?,” IEEE Trans. Med. Imaging, vol. 35, no. 5, pp. 1299–1312, May 2016, doi: 10.1109/TMI.2016.2535302.
J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, “How transferable are features in deep neural networks?,” in NIPS’14: Proceedings of the 27th International Conference on Neural Information Processing Systems - Volume 2, Nov. 2014, pp. 3320–3328. [Online]. Available: http://arxiv.org/abs/1411.1792
S. J. Pan and Q. Yang, “A Survey on Transfer Learning,” IEEE Trans. Knowl. Data Eng., vol. 22, no. 10, pp. 1345–1359, Oct. 2010, doi: 10.1109/TKDE.2009.191.
H.-C. Shin et al., “Deep Convolutional Neural Networks for Computer-Aided Detection: CNN Architectures, Dataset Characteristics and Transfer Learning,” IEEE Trans. Med. Imaging, vol. 35, no. 5, pp. 1285–1298, May 2016, doi: 10.1109/TMI.2016.2528162.
J. Bernal, F. Vilariño, and J. Sánchez, “Feature detectors and feature descriptors: Where we are now,” Universitat Autonoma de Barcelona, 2010. [Online]. Available: https://refbase.cvc.uab.es/files/BVS2009.pdf
S. M. Krishnan, X. Yang, K. L. Chan, S. Kumar, and P. M. Y. Goh, “Intestinal abnormality detection from endoscopic images,” in Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Vol.20 Biomedical Engineering Towards the Year 2000 and Beyond (Cat. No.98CH36286), 2002, vol. 2, pp. 895–898. doi: 10.1109/IEMBS.1998.745583.
A. Al Mamun, P. P. Em, T. Ghosh, M. M. Hossain, M. G. Hasan, and M. G. Sadeque, “Bleeding recognition technique in wireless capsule endoscopy images using fuzzy logic and principal component analysis,” Int. J. Electr. Comput. Eng., vol. 11, no. 3, p. 2688, Jun. 2021, doi: 10.11591/ijece.v11i3.pp2688-2695.
J.-X. Liu, C.-H. Zheng, and Y. Xu, “Extracting plants core genes responding to abiotic stresses by penalized matrix decomposition,” Comput. Biol. Med., vol. 42, no. 5, pp. 582–589, May 2012, doi: 10.1016/j.compbiomed.2012.02.002.
Z. Lv, Y. Wang, C. Zhang, X. Gao, and X. Wu, “An ICA-based spatial filtering approach to saccadic EOG signal recognition,” Biomed. Signal Process. Control, vol. 43, pp. 9–17, May 2018, doi: 10.1016/j.bspc.2018.01.003.
P. Sasmal, M. K. Bhuyan, Y. Iwahori, and K. Kasugai, “Colonoscopic Polyp Classification Using Local Shape and Texture Features,” IEEE Access, vol. 9, pp. 92629–92639, 2021, doi: 10.1109/ACCESS.2021.3092263.
S. Grosu et al., “Machine Learning–based Differentiation of Benign and Premalignant Colorectal Polyps Detected with CT Colonography in an Asymptomatic Screening Population: A Proof-of-Concept Study,” Radiology, vol. 299, no. 2, pp. 326–335, May 2021, doi: 10.1148/radiol.2021202363.
A. Ellahyani, I. El Jaafari, S. Charfi, and M. El Ansari, “Fine-tuned deep neural networks for polyp detection in colonoscopy images,” Pers. Ubiquitous Comput., vol. 27, no. 2, pp. 235–247, Apr. 2023, doi: 10.1007/s00779-021-01660-y.
J. González-Bueno Puyal et al., “Polyp detection on video colonoscopy using a hybrid 2D/3D CNN,” Med. Image Anal., vol. 82, p. 102625, Nov. 2022, doi: 10.1016/j.media.2022.102625.
O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional Networks for Biomedical Image Segmentation,” in Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, 2015, pp. 234–241. doi: 10.1007/978-3-319-24574-4_28.
M. A. Hambali and P. A. Agwu, “Adversarial Convolutional Neural Network for Predicting Blood Clot Ischemic Stroke,” J. Comput. Theor. Appl., vol. 2, no. 1, pp. 51–64, Jun. 2024, doi: 10.62411/jcta.10516.
M. T. H. Khan Tusar, M. T. Islam, A. H. Sakil, M. N. H. N. Khandaker, and M. M. Hossain, “An Intelligent Telediagnosis of Acute Lymphoblastic Leukemia using Histopathological Deep Learning,” J. Comput. Theor. Appl., vol. 2, no. 1, pp. 1–12, May 2024, doi: 10.62411/jcta.10358.
F. Rosenblatt, “The perceptron: A probabilistic model for information storage and organization in the brain.,” Psychol. Rev., vol. 65, no. 6, pp. 386–408, 1958, doi: 10.1037/h0042519.
A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with deep convolutional neural networks,” Commun. ACM, vol. 60, no. 6, pp. 84–90, May 2017, doi: 10.1145/3065386.
K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” in arXiv, Sep. 2014, pp. 1–14. [Online]. Available: https://arxiv.org/abs/1409.1556
M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “MobileNetV2: Inverted Residuals and Linear Bottlenecks,” in 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Jun. 2018, pp. 4510–4520. doi: 10.1109/CVPR.2018.00474.
K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recognition,” in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Jun. 2016, vol. 2016-Decem, pp. 770–778. doi: 10.1109/CVPR.2016.90.
G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely Connected Convolutional Networks,” in 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Jul. 2017, pp. 2261–2269. doi: 10.1109/CVPR.2017.243.
M. Tan and Q. V. Le, “EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks,” May 2019, [Online]. Available: http://arxiv.org/abs/1905.11946
Y. J. Kim, J. P. Bae, J.-W. Chung, D. K. Park, K. G. Kim, and Y. J. Kim, “New polyp image classification technique using transfer learning of network-in-network structure in endoscopic images,” Sci. Rep., vol. 11, no. 1, p. 3605, Feb. 2021, doi: 10.1038/s41598-021-83199-9.
D. R. I. M. Setiadi, H. M. M. Islam, G. A. Trisnapradika, and W. Herowati, “Analyzing Preprocessing Impact on Machine Learning Classifiers for Cryotherapy and Immunotherapy Dataset,” J. Futur. Artif. Intell. Technol., vol. 1, no. 1, pp. 39–50, Jun. 2024, doi: 10.62411/faith.2024-2.
T. R. Noviandy, G. M. Idroes, and I. Hardi, “An Interpretable Machine Learning Strategy for Antimalarial Drug Discovery with LightGBM and SHAP,” J. Futur. Artif. Intell. Technol., vol. 1, no. 2, pp. 84–95, Aug. 2024, doi: 10.62411/faith.2024-16.
A. Tharwat, “Classification assessment methods,” Appl. Comput. Informatics, vol. 17, no. 1, pp. 168–192, Jan. 2021, doi: 10.1016/j.aci.2018.08.003.
N. Tajbakhsh, S. R. Gurudu, and J. Liang, “Automated Polyp Detection in Colonoscopy Videos Using Shape and Context Information,” IEEE Trans. Med. Imaging, vol. 35, no. 2, pp. 630–644, Feb. 2016, doi: 10.1109/TMI.2015.2487997.
N. Dehghani et al., “Robust Colorectal Polyp Characterization Using a Hybrid Bayesian Neural Network,” in Cancer Prevention Through Early Detection, 2022, pp. 108–117. doi: 10.1007/978-3-031-17979-2_11.
G. Urban et al., “Deep Learning Localizes and Identifies Polyps in Real Time With 96% Accuracy in Screening Colonoscopy,” Gastroenterology, vol. 155, no. 4, pp. 1069-1078.e8, Oct. 2018, doi: 10.1053/j.gastro.2018.06.037.
Ş. Öztürk and U. Özkaya, “Gastrointestinal tract classification using improved LSTM based CNN,” Multimed. Tools Appl., vol. 79, no. 39–40, pp. 28825–28840, Oct. 2020, doi: 10.1007/s11042-020-09468-3.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Journal of Future Artificial Intelligence and Technologies
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.