Optimizing Rice Production Forecasting Through Integrating Multiple Linear Regression with Recursive Feature Elimination
DOI:
https://doi.org/10.62411/faith.2024-17Keywords:
Adamawa, Cross River, Food Security, Multiple Linear Regression, PredictionAbstract
Rice is a staple food for most Nigerians, making accurate yield prediction is crucial for food security. This study addresses the limitations of traditional forecasting methods by employing Multiple Linear Regression (MLR) coupled with Recursive Feature Elimination (RFE) to predict rice yield in Adamawa and Cross River states, characterized by distinct agroclimatic conditions. Utilizing climatic data and historical yield records from 1990 to 2022, we trained and evaluated MLR and compared the MLR results with two other machine learning models (XGBoost, and K Nearest Neighbours). RFE-optimized feature selection identified All-sky Photosynthetically Active Radiation (PAR) as a key factor. MLR demonstrated a very stable prediction performance with R² values of 0.90 and 0.92 for Adamawa and Cross River, respectively, after RFE. This research contributes to developing advanced Agro-information systems, supporting informed agricultural decision-making, and enhancing Nigeria's food security.
Downloads
References
W. Rosa, Ed., “Transforming Our World: The 2030 Agenda for Sustainable Development,” in A New Era in Global Health, New York, NY: Springer Publishing Company, 2017, pp. 529–567. doi: 10.1891/9780826190123.ap02.
FAO, IFAD, UNICEF, WFP, and WHO, The State of Food Security and Nutrition in the World 2023. FAO; IFAD; UNICEF; WFP; WHO;, 2023. doi: 10.4060/cc3017en.
B. Das, B. Nair, V. K. Reddy, and P. Venkatesh, “Evaluation of multiple linear, neural network and penalised regression models for prediction of rice yield based on weather parameters for west coast of India,” Int. J. Biometeorol., vol. 62, no. 10, pp. 1809–1822, Oct. 2018, doi: 10.1007/s00484-018-1583-6.
S. S. Gnanamanickam, “Rice and Its Importance to Human Life,” in Biological Control of Rice Diseases, Dordrecht: Springer Netherlands, 2009, pp. 1–11. doi: 10.1007/978-90-481-2465-7_1.
R. S. Zeigler and A. Barclay, “The Relevance of Rice,” Rice, vol. 1, no. 1, pp. 3–10, Sep. 2008, doi: 10.1007/s12284-008-9001-z.
K. Gyimah-Brempong, M. Johnson, and H. Takeshima, “Chapter 1. Rice in the Nigerian Economy and Agricultural Policies,” in The Nigerian Rice Economy, K. Gyimah-Brempong, M. Johnson, and H. Takeshima, Eds. Philadelphia: University of Pennsylvania Press, 2016, pp. 1–20. doi: 10.9783/9780812293753-005.
N. Kamai, L. O. Omoigui, A. Y. Kamara, and F. Ekeleme, “Guide to Maize Production in Northern Nigeria,” International Institute of Tropical Agriculture, 2020.
D. D. Sasu, “Production of milled rice in Nigeria 2010-2023,” Statista, 2023. https://www.statista.com/statistics/1134510/production-of-milled-rice-in-nigeria/ (accessed Sep. 26, 2023).
U. U. Okonkwo, V. Ukaogo, D. Kenechukwu, V. Nwanshindu, and G. Okeagu, “The politics of rice production in Nigeria: The Abakaliki example, 1942-2020,” Cogent Arts Humanit., vol. 8, no. 1, Jan. 2021, doi: 10.1080/23311983.2021.1880680.
D. I. Onwude et al., “Mechanization of Agricultural Production in Developing Countries,” in Advances in Agricultural Machinery and Technologies, CRC Press, 2018, pp. 3–26. doi: 10.1201/9781351132398-1.
A. Karasev, “Excursıon to The Hıstory of Tractor Buıldıng and The Introductıon of Tractors in Agrıculture,” Tekhnicheskiy Serv. mashin, vol. 1, 2023, doi: 10.22314/2618-8287-2023-61-1-155-163.
N. ElBeheiry and R. S. Balog, “Technologies Driving the Shift to Smart Farming: A Review,” IEEE Sens. J., vol. 23, no. 3, pp. 1752–1769, Feb. 2023, doi: 10.1109/JSEN.2022.3225183.
A. Sharma, A. Jain, P. Gupta, and V. Chowdary, “Machine Learning Applications for Precision Agriculture: A Comprehensive Review,” IEEE Access, vol. 9, pp. 4843–4873, 2021, doi: 10.1109/ACCESS.2020.3048415.
F. J. Pierce and P. Nowak, “Aspects of Precision Agriculture,” in Advances in Agronomy, D. L. Sparks, Ed. 1999, pp. 1–85. doi: 10.1016/S0065-2113(08)60513-1.
T. van Klompenburg, A. Kassahun, and C. Catal, “Crop yield prediction using machine learning: A systematic literature review,” Comput. Electron. Agric., vol. 177, no. August, p. 105709, Oct. 2020, doi: 10.1016/j.compag.2020.105709.
A. K. Mariappan and J. A. Ben Das, “A paradigm for rice yield prediction in Tamilnadu,” in 2017 IEEE Technological Innovations in ICT for Agriculture and Rural Development (TIAR), Apr. 2017, pp. 18–21. doi: 10.1109/TIAR.2017.8273679.
J. T. Ritchie, U. Singh, D. C. Godwin, and W. T. Bowen, “Cereal growth, development and yield,” in Understanding Options for Agricultural Production, 1998, pp. 79–98. doi: 10.1007/978-94-017-3624-4_5.
S. Khaki and L. Wang, “Crop Yield Prediction Using Deep Neural Networks,” in Smart Service Systems, Operations Management, and Analytics, 2020, pp. 139–147. doi: 10.1007/978-3-030-30967-1_13.
J. van Wart, K. C. Kersebaum, S. Peng, M. Milner, and K. G. Cassman, “Estimating crop yield potential at regional to national scales,” F. Crop. Res., vol. 143, pp. 34–43, Mar. 2013, doi: 10.1016/j.fcr.2012.11.018.
P. J. A. van Asten, S. Kaaria, A. M. Fermont, and R. J. Delve, “Challenges and lessons when using farmer knowledge in agricultural research and development projects in Africa,” Exp. Agric., vol. 45, no. 1, pp. 1–14, Jan. 2009, doi: 10.1017/S0014479708006984.
D. Paudel et al., “Machine learning for large-scale crop yield forecasting,” Agric. Syst., vol. 187, p. 103016, Feb. 2021, doi: 10.1016/j.agsy.2020.103016.
U. Patrio, Y. Yuliska, and Y. Lulu Widyasari, “Predicting Rice Production In Sumatra Island Using Linear Regression,” in Proceedings of the 11th International Applied Business and Engineering Conference, ABEC 2023, September 21st, 2023, Bengkalis, Riau, Indonesia, 2024. doi: 10.4108/eai.21-9-2023.2342997.
I. B. Iorliam, B. A. Ikyo, A. Iorliam, E. O. Okube, K. D. Kwaghtyo, and Y. I. Shehu, “Application of Machine Learning Techniques for Okra Shelf Life Prediction,” J. Data Anal. Inf. Process., vol. 09, no. 03, pp. 136–150, 2021, doi: 10.4236/jdaip.2021.93009.
E. A. Jiya, U. Illiyasu, and M. Akinyemi, “Rice Yield Forecasting: A Comparative Analysis of Multiple Machine Learning Algorithms,” J. Inf. Syst. Informatics, vol. 5, no. 2, pp. 785–799, Jun. 2023, doi: 10.51519/journalisi.v5i2.506.
National Bureau of Statistics, “Demographic Statistics Bulletin 2013,” 2013. [Online]. Available: https://nigerianstat.gov.ng/download/1241121
Adamawa State Planning Commission, “Adamawa State – Adamawa State Planning Commission,” 2024. https://adspc.ad.gov.ng/adamawa-state/ (accessed Feb. 29, 2024).
A. A. Adebayo and A. L. Tukur, Adamawa State in Maps. Paraclete Publishers, 1999. [Online]. Available: https://books.google.co.id/books?id=eFTVAAAACAAJ
D. Maulud and A. M. Abdulazeez, “A Review on Linear Regression Comprehensive in Machine Learning,” J. Appl. Sci. Technol. Trends, vol. 1, no. 2, pp. 140–147, Dec. 2020, doi: 10.38094/jastt1457.
A. Peˇckov, “A Machıne Learnıng Approach to Polynomıal Regressıon,” Joˇzef Stefan International Postgraduate School, 2012. [Online]. Available: https://slais.ijs.si/wp-content/uploads/2021/07/Doktorske/phd_aleksandar_peckov.pdf
D. R. I. M. Setiadi, S. Widiono, A. N. Safriandono, and S. Budi, “Phishing Website Detection Using Bidirectional Gated Recurrent Unit Model and Feature Selection,” J. Futur. Artif. Intell. Technol., vol. 2, no. 1, pp. 75–83, 2024, doi: 10.62411/faith.2024-15.
F. Omoruwou, A. A. Ojugo, and S. E. Ilodigwe, “Strategic Feature Selection for Enhanced Scorch Prediction in Flexible Polyurethane Form Manufacturing,” J. Comput. Theor. Appl., vol. 1, no. 3, pp. 346–357, Feb. 2024, doi: 10.62411/jcta.9539.
G. Chandrashekar and F. Sahin, “A survey on feature selection methods,” Comput. Electr. Eng., vol. 40, no. 1, pp. 16–28, Jan. 2014, doi: 10.1016/j.compeleceng.2013.11.024.
E. B. Wijayanti, D. R. I. M. Setiadi, and B. H. Setyoko, “Dataset Analysis and Feature Characteristics to Predict Rice Production based on eXtreme Gradient Boosting,” J. Comput. Theor. Appl., vol. 1, no. 3, pp. 299–310, Feb. 2024, doi: 10.62411/jcta.10057.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Journal of Future Artificial Intelligence and Technologies
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.